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EXECUTIVE SUMMARY 
 

Connected and automated vehicles are currently the new technology and also heighted 

interests in transportation arena. Many research studies have been done in different 

aspects of CAVs. In transportation, different modeling frameworks are proposed to 

ensure that CAVs can travel through the highway, ramps, roundabouts, and most 

importantly, intersections. For modeling framework, researchers have developed various 

control strategies to achieve different goals. The modeling topics cover car following 

models, lane changing models, platooning control of CAVs, platooning control of mixed 

CAVs and HDVs, trajectory planning of CAVs, platooning-based trajectory planning, 

and signal optimization, etc. Popular performance indicators, such as travel time, traffic 

delay, fuel consumption, collisions, and emissions, can be evaluated and significantly 

improved through numerical simulation on different simulation platforms including PTV 

VISSIM, SUMO, Paramics and INTEGRATION.  

 

The performances of CAVs in typical transportation environments have been extensively 

studied, while little attention was given to the performances of CAVs in intersections 

with innovative designs. In the U.S., numerous innovative intersection designs have been 

implemented across the country. Such popular innovative intersection designs consist of 

continuous flow intersection, restricted crossing U turn intersection, and median U turn, 

etc. Therefore, a research gap exists in evaluating the performances of CAVs on the 

innovative intersections. This study can mitigate the research gap by simulating CAVs in 

the environment of fixed signal-controlled superstreet and evaluating relevant 

performances.    

 

To evaluate the performances of CAVs in fixed signal and adaptive signal-controlled 

superstreets, this research specifically designs the platooning, trajectory planning and 

signal optimization models for CAVs. This research also identifies different car following 

models which could potentially reflect the car following behaviors of HDVs and CAVs 

respectively. A real-world superstreet is selected and relevant parameters of the HDV-

based car following model are calibrated based on the reported traffic flow information. 

The developed model framework is incorporated into the popular microscopic traffic 

simulation platform SUMO. Five runs for each simulation scenarios with different traffic 

demand are conducted to obtain the average traffic delay and fuel consumptions. In 

addition, this research also tests the performances of CAVs under mixed traffic 

environments where CAVs and HDVs coexist. An equivalent conventional intersection 

with a specific lane configuration is also designed in the simulation environment to make 

a comparison with the superstreet.  

 

The simulation results from calibrated W99 and IDM indicate that IDM with shorter 

headways yields few benefits in terms of average traffic delay and fuel consumption. 

Nevertheless, IDM with platooning and trajectory planning can produce less traffic delay 

and fuel consumption than IDM only in most scenarios. It is also found that platooning 

and trajectory planning produce quite different impacts in different traffic demand 

scenarios. The influence of platooning is more significant in heavy traffic volume 

scenarios while the influence of trajectory planning is more significant in light traffic 



 

x 

 

volume scenarios. The platooning-based trajectory planning model, in which the 

trajectory planning is only applied to the leading vehicle of the platoon, produces a 

balanced performance between trajectory planning and platooning. CAVs under adaptive 

signal control have a better performance in superstreet compared to trajectory planning 

and platooning. Trajectory planning model framework could have adverse effects on the 

fuel consumption in certain traffic volume scenarios as it is lack of consideration of 

consecutive signalized intersections. The future direction of research can be a more 

sophisticated trajectory planning model that takes into account multiple closely spaced 

signalized intersections to alleviate the identified adverse effects.   

 

The simulation results from the mixed traffic environments can yield adverse effects on 

both traffic delay and fuel consumption. CAVs start to yield benefits when the market 

penetration rate is 75%. The adaptive signal control can have stable benefits regarding 

different arm lengths of superstreet.  
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CHAPTER 1 INTRODUCTION 
 

1.1 Problem Statement  

 

Road congestion has been a major source of economic loss and environmental 

pollution in the transportation arena. There are different approaches developed by 

transportation professionals to mitigate this issue, to name a few, signal optimization, 

innovative intersection design, variable speed limit control, and ramp metering. These 

methods have been proved to have the ability to significantly improve the performances 

of existing transportation infrastructure. Among these strategies, innovative intersection 

design is often featured with a displaced left turn and channelize right of ways. With 

considerable construction cost, the innovative intersection can significantly increase the 

traffic efficiency especially when there is relatively large traffic volume from the main 

road and less traffic volume from the minor road. According to Hummer (2014), there 

have been numerous superstreets constructed in the states of North Carolina and 

Maryland. According to the existing investigation on the performances of superstreet, 

conclusions were made that superstreet can provide both travel time and safety benefits. 

Nevertheless, it was also pinpointed that superstreet may confuse drivers who are not 

familiar with superstreet designs. Hence, in the implementation stage, proper road signs 

and signal indications play important roles in the superstreet operations.  

 

Recently, as a new technology trend, connected and autonomous vehicles have 

come to reality thanks to the development of information and computation technologies. 

Many researchers have devoted their efforts to investigating the benefits of CAVs in 

different transportation environments, including freeways, ramps, roundabouts, and 

intersections. Nevertheless, the knowledge on the performances of CAV in the innovative 

intersection design is limited. The lack of this knowledge may produce biased prediction 

on the future influence of CAVs in the existing transportation infrastructure. Hence this 

research is designed to mitigate this gap by evaluating and comparing the performance 

difference of the superstreet and conventional intersection.  

 

In these studies, advanced CAV behavior models are developed and tested against 

traditional HDVs such as trajectory planning and platooning. The mechanisms of 

trajectory planning vary in different transportation settings. For example, in the signal-

controlled intersection, trajectory planning relies on the communication of vehicles and 

traffic signal controllers. On the other hand, in the non-signalized intersection, the 

trajectory planning will rely on communication with other vehicles so that the optimal 

sequence of entering the intersection can be planned. In addition, car-following models of 

CAVs often differ from the ones of HDVs. The car-following models of CAVs have an 

intuitively measurable parameter, whose values are made feasible through Radar or 

LiDAR of CAVs. Platooning and adaptive signal control are two advanced CAV features 

which rely on vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) 

communication technologies. This project also develops relevant models to test these 

CAV features in the superstreet environment.  
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1.2 Expected Contribution 

  

To test the performances of CAVs in superstreet and conventional intersections, 

this research calibrates HDV models and develops specific models for CAVs. The 

contribution of this research includes the following: 

1. Developed platooning, trajectory planning, and adaptive signal controls for 

CAVs. 

2. Calibrated W99 model for HDVs in the environment of superstreet. 

3. Identified the impact of CAVs in the environment of superstreet and 

conventional intersection with each standalone features. 

4. Conducted sensitivity analyses for CAV models in specific scenarios. 

 

1.3 Report Overview 

 

Chapter 1 provides essential background information about CAVs and 

superstreets in the problem statement and motivation section. This chapter also covers the 

research objectives and expected contributions from this research. In the end, Chapter 1 

describes the overall research structure for this study.   

 

Chapter 2 presents a comprehensive review of the existing literature on the 

behavior models for CAVs and HDVs as well as superstreets. The behavior models for 

simulated vehicles can be grouped into four categories, which are intersection 

management, car following, lane changing, and CAV platooning. The intersection 

management section reviews how CAV behave in non-signalized intersections and 

signal-controlled intersections respectively. For the superstreet, this chapter presents the 

concept and application of the superstreet design, existing studies on the operational 

performance of superstreet, and research on the CAVs and superstreet.  

 

Chapter 3 illustrates the methodologies and the overall experiment framework. 

First, this chapter introduces the behavior models employed in this research, including 

Wiedemann 99 (W99) and Intelligent Driver Model (IDM), platooning control, trajectory 

planning, adaptive signal control, and trajectory planning under adaptive signal control, 

followed by the description of the simulation platform. Two sets of platooning controls 

and trajectory planning controls are developed and tested respectively. The research team 

also applies different car following models for HDVs and CAVs to distinguish their 

characteristics. Sensitivity analyses, such as traffic scales, market penetration, and arm 

lengths from superstreet, are conducted in some specific scenarios. Chapter 3 also covers 

the information about the selected real-world superstreet and the designed simulation 

experiments. 

 

Chapter 4 presents the simulation results for the operational performances of 

CAVs and HDVs in the environment of the superstreet and the equivalent conventional 

intersection in terms of average traffic delay and fuel consumption. According to the 

designed scenarios in Chapter 3, the effects of each CAV technique are validated by the 

corresponding simulation results. This chapter also provides relevant rationales for the 

different performances with CAV techniques and in different environments. Traffic 
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delays and fuel consumption are selected as the performance indicators since they can 

represent the transportation efficiency and environmental impacts respectively.  

 

Chapter 5 concludes this research with the main findings from this research. 

These findings may provide important references for policymakers or transportation 

designers. The control strategies devised to obtain these findings can also be utilized for 

other CAV studies.  In addition, this chapter also discusses the potential future research 

directions that are highly related to the current research topic.  
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CHAPTER 2 LITERATURE REVIEW 
 

The literature review section covers several topics, including superstreets, car-

following models for CAVs and HDVs, platooning of CAVs, trajectory planning for 

CAVs, and signal optimization with CAVs. The literature view section provides a solid 

reference for the later-proposed model framework of CAV behavior models. With the 

proposed CAV model framework, the performances of CAVs in the environment of 

superstreet and conventional intersections can be well represented.  

 

2.1 Superstreet Background and Relevant Studies 

 

2.1.1 Superstreet Background 

 

Superstreet is one of the popular innovative intersection designs. It has superior 

performance compared to the conventional intersections in unbalanced traffic volume 

scenarios, which is often seen in the real world. It is a variation of the median U-turn 

design, which guides left-turn vehicles from both the main street and minor street to 

travel through the intersection first and make a U-turn in a median opening that is usually 

situated hundreds of feet away from the main intersection. Superstreet differs from the 

median U-turn design in that left-turn vehicles from the main street can avoid making a 

U-turn by going through a dedicated channel to further increase the traffic efficiency for 

the main street. Unlike the median U-turn design, through movement from the minor 

approaches in the superstreet also have to make the detour in the median opening to 

complete the trip. With such design, superstreet can increase road capacity and enhance 

safety due to the fewer number of phases and conflicting movements in each sub 

intersection of the superstreet environment.   

 

Superstreet has been successfully implemented in numerous states in the US 

(Hummer et al., 2014) and researchers have also investigated the performances of 

superstreet in various aspects including safety, travel time, traffic delay, and so forth 

(Haley et al., 2011; Hummer et al., 2010; Naghawi and Idewu, et al., 2014; Ott et al., 

2015; Reid and Hummer, 2001). Conclusions were made that the superstreet can 

outperform the equivalent conventional intersections in terms of average travel time or 

traffic delay.  

 

For safety benefits, in addition, the design of the superstreet successfully reduces 

the conflict points inside the superstreet system compared to the conventional intersection. 

Nevertheless, it should also be noted that the design of the superstreet may confuse 

drivers who are not familiar with superstreet. Such a phenomenon may impact the safety 

benefits of superstreet adversely.   

 

Apart from the performance and safety studies, Xu et al. (2017) investigated the 

optimal U-turn offset length with an analytical approach based on the drivers’ acceptable 

gap distributions. Later, Xu et al. (2019) investigated the optimal signal timing design for 

superstreet with the objectives of maximizing the throughput and green bandwidth. Both 

of these studies provided important references for the application of superstreets.  
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Although there have been few studies that have been identified with both topics of 

CAVs and innovative intersection, Zhong et al. (2017) studied the CAV performances in 

diverging diamond interchange and superstreet respectively.   

 

2.1.2 CAV in Different Environments 

 

Extensive efforts have been made to evaluate the performance of CAVs in various 

typical transportation environments, including freeway segments, conventional 

intersections, and roundabouts. A sample of literature for the CAVs studies in other 

transportation environments is provided in Table 2.1. CAVs outperformed the HDVs in 

various transportation environments.  

 

TABLE 2.1 CAV Studies in Other Transpiration Environments 

Transportation 

Environments 
Authors Year CAV Features 

Freeway 

Guo, J. et al. 2020 CACC, platoons, cooperative merging 

Adebisi et al. 2020 CACC models 

Liu and Fan 2020 CAVs with revised intelligent Driver Model 

Chityala et al. 2020 CAVs with shorter headways 

Hu and Sun 2019 Cooperative Lane Changing Control, Cooperative Merging Control 

Conventional 

Intersection 

Han et al. 2020 Platooning based Trajectory Planning with optimal control framework 

Pourmehrab et al. 2020 
CAVs with an intelligent intersection control algorithm (IICA) and hybrid 

autonomous intersection management (H-AIM) 

Guo, Y. et al. 2019 
Joint optimization of vehicle trajectory and intersection controller with 
combined dynamic programming and shooting heuristic approach 

Roundabout 

Mohebifard and 

Hajbabaie 
2020 CAVs with optimized trajectory  

Mohebifard and 

Hajbabaie 
2021 

Trajectory control in a roundabout with a mixed fleet of automated 

and human-driven vehicles 

Martin-Gasulla and 

Elefteriadou 
2021 Roundabout management algorithm for trajectory planning of CAVs 

Chalaki et al. 2020 Trajectory planning control framework for roundabout 

 

2.2 Car Following Models 

 

This section introduces the popular models in modeling CAVs and HDVs 

respectively. CAV car following models include IDM, Adaptive Cruising Control (ACC) 

model, and Cooperative Adaptive Cruising Control (CACC) while the HDV car 

following model mainly discusses the W99 model. A brief literature summary is provided 

in Table 2.2 for the studies that have considered IDM, ACC, or CACC in their CAV 

research.  
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TABLE 2.2 Applications of IDM, ACC, and CACC Models 

Kesting and Treiber 2008 IDM Applied the genetic algorithm to optimize the parameters in IDM 

using trajectory data 

Moon et al 2009 ACC Design, tuning, and evaluation of a full range ACC system with 

collision avoidance control.  

Nowakowski et al 2010 CACC Surveyed 16 drivers on their acceptability of CACC system 

Bifulco et al 2013 ACC Proposed four-layer structure ACC control system for automated 

vehicles.  

Derbel 2013 IDM Improved IDMby guaranteeing traffic safety and reducing the overly 

high deceleration 

Milanes et al 2014 CACC Presented the design, development, implementation, and testing of a 

CACC system 

Ploeg et al. 2014 CACC Evaluate string stability behaviors through theoretical analysis on the 

wireless inter-vehicle communication to provide real-time information 

of the preceding vehicle 

Rachel M. Malinauskas 2014 IDM Examined the IDM in the vector-valued time-autonomous ODE 

system 

Treiber et al.  2017 IDM Added external noise and action points to the IDM 

 

2.2.1 IDM 

 

The Intelligent Driver Model, i.e., IDM, was developed by Treiber (2000) firstly 

to model the traffic in a single lane without considering the lane changing behavior. IDM 

has intuitively measurable parameters which can be easily accessed through the 

communications between vehicles and infrastructures. All six parameters have concrete 

meaning (Kesting and Treiber, 2008). IDM provides a good foundation for researchers to 

further develop the ACC vehicle model or CACC model. Therefore, it is popularly 

applied in modeling CAVs. There are currently a considerable number of studies that 

have chosen IDM as the base model for CAV behaviors, as shown in Table 2.2.  

 

2.2.2 ACC and CACC 

 

Adaptive Cruising Control model is developed to model the CAVs without 

communication capability with other vehicles. Nevertheless, ACC vehicles can detect the 

distance and velocity through Lidar but with an increased delay compared to the vehicles 

that can communicate with other vehicles directly.  

 

ACC is a terminology that describes the longitudinal control strategy for 

autonomous vehicles that have radar, lidar, and camera installed. Many of these 

longitudinal control strategies are distance regulation oriented (Shladover, 1995; Xiao et 

al., 2011).  According to He et al. (2019), the ACC models can be classified as 

proportional-integral-derivative (PID) feedback/feedforward control, model predictive 

control (MPC), and fuzzy logic control (FLC). PID control is a commonly accepted and 

tested strategy for ACC and a representative is a model proposed by Shladover et al 

(2012), in which the acceleration rate of the following vehicle was expressed as a 

function of the distance error and the relative speed.  Geiger et al. (2012) developed a 

CACC system (which covers the functions of ACC) based on the MDC. By assuming the 

preceding vehicle drive at constant yaw rate and acceleration in the defined time horizon, 
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the optimal acceleration rate is obtained by minimizing the cost function which contains 

the terms of distance error, relative speed difference, and the current acceleration rate.  

FLC resolves the ACC problem by calculating the safe distance depending on whether a 

preceding vehicle is present or not.  

 

CACC improves ACC by adding communication between vehicles. For ACC 

vehicles, the information on the preceding vehicle is retrieved by onboard sensors like 

radar or lidar. CACC vehicles can share the speed, position, and acceleration rate with 

shorter communication latencies.  CACC control and ACC shared a similar model 

structure in Xiao et al. (2017) but had shorter reaction time and spacing margins. 

 

Arem (2006) studied the impacts of CACC for a highway-merging scenario from 

four to three lanes. The CACC system was modeled with the traffic flow simulation 

model, MIXIC. MIXIC was utilized to control the longitudinal movement of CAVs when 

CACC mode was not in control. The simulation results showed an improvement of traffic 

flow stability with a slight increase in traffic-flow efficiency compared to vehicles 

without CACC control.  

 

To sum up, IDM, ACC, and CACC are all popularly applied in CAV modeling 

for their intuitive measurable parameters. These three models are also in continuous 

developing stages for addressing limitations with technology development. In addition to 

these models, there are also other car-following models applied in CAV research, such as 

Newell’s car-following model. Newell’s car-following model is appealing in modeling 

CAVs for its simplicity and consistency with the triangular fundamental diagram, by 

giving the exact numerical solution for the kinematic wave model (Chen et al., 2012).  

Numerous researchers have applied Newell’s car following model in their trajectory 

optimization or platooning models (Gong and Du et al., 2018; Wei et al., 2017).  

 

 

2.2.3 W99  

 

2.2.3.1 Brief Overview for the HDV Car Following Model 

 

When transportation professionals evaluate proposed intersection designs or 

signal designs, simulation environments are often employed. The embedded car 

following model in the simulation software is often utilized as the HDV car following 

model by default. Table 2.3 provides a summary of the popular car-following models and 

their associated car-following models. In the PTV VISSIM, Wiednesmann 1974 and W99 

are the only two models supported by default. However, PTV VISSIM allows users to 

add user-defined car following model through Application Programming Interface (API). 

For AIMSUN, the car following model is developed based on Gipp’s car-following 

model. PTV VISSIM and Paramic both employed a psychophysical car model which 

could capture the randomness of the human drivers’ behaviors.  
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TABLE 2.3 Microscopic Traffic Simulation Software and Their Involved Car 

following Model  

Software Car following model involved 

PTV VISSIM Wiedesmann 99 and Wiedesmann 1974 

AIMSUN Gipps 

MITSIM GHR model 

Paramics Fritzsche pscho-physcial model 

INTEGRATION Pipes model 

 

2.2.3.2 W99 Illustration 

 

W99 model, or the Wiedemann 99 model (ten parameter version), belongs to the 

psychophysical or action point models. The driving behavior of humans is assumed to be 

normally distributed, which indicates that each driver has a different perception, reaction, 

and estimation of surrounding traffic environments, safety needs, desired speed, and 

aggressiveness towards maximum acceleration/deceleration values (Ahmed et al., 2021). 

In the Wiedemann model, CAVs would have four modes, namely the following behavior, 

free driving behavior, closing-in behavior, and breaking behaviors. All these behaviors 

are modeled with different function that also contains parameters for calibration. 

 

The W99 model is employed in the popular simulation platform, PTV VISSIM. 

Through the W99 model and PTV VISSIM, many transportation researchers had 

employed W99 to calibrate HDV traffic for their studies or assume default values of W99 

in their evaluations of traffic performances.  

 

Kaths et al. (2021) employed the W99 model to calibrate the bicycle traffic 

characteristics in PTV VISSIM. The calibrated model was validated with trajectories 

collected during a bicycle simulator experiment. The trajectory data contained the 

position and velocity for each simulation step. The simulation results indicated that 

average queue dissipation time decreases as the width of the bicycle lane increases. The 

validation results showed that a 1.5 m wide bicycle lane was the most meaningful in 

assessing the car-following model parameters.  

 

Durrani et al. (2016) calibrated W99 for three vehicle classes, i.e., cars, heavy 

vehicles, and motorcycles. A total of 2160 vehicle trajectories were obtained from a 640-

m segment of US-101 in Los Angeles, California in the morning peak hour. Different sets 

of control parameters of W99 were calibrated for these three vehicle types and it was 

found that the driving behaviors of cars and heavy vehicles are significantly different. For 

example, heavy vehicles had a longer spacing time gap compared to cars. The difference 

between simulated and observed average speed and acceleration distributions were the 

calibration goals to be minimized.  

 

Chaudhari et al. (2022) proposed a calibration approach for the W99 model in the 

mixed traffic composition scenarios, where six classes of conventional vehicles were 

present, including motorized two shellers, cars, auto/three-wheelers, buses, light 

commercial vehicles, and heavy commercial vehicles. This research also modified the 

acceleration equations of the existing W99 model to better represent the mixed traffic 
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conditions. The calibration approach and performance were both tested. The modified 

W99 had a smaller root mean square error (RMSE) compared to the existing W99.   

 

2.3 Platooning 

 

2.3.1 Introduction  

 

In the CAV environment, a platoon is defined as a group of vehicles that include a 

leader, which leads the platoon on the road, and followers, which follow their preceding 

vehicles with a short distance (Hallé and Chaib-draa, 2005). There have been a 

considerable number of studies that have investigated the potential benefits of platooning 

feature of CAVs, such as reducing congestion, increasing capacity, and alleviating 

pollution. When CAVs are inside a platoon, they can maintain smaller headways 

compared to non-platooning vehicles. The platooning feature of CAVs can also reduce 

the operational cost of commercial truck companies when the behaviors of the following 

trucks are determined by the leading trucks (Hurtado-Beltran and Rilett, 2021). Because 

of the benefits mentioned above, CAV platooning is a subject of heightened interest for 

the industry sector. Bhoopalam et al. (2017) comprehensively reviewed the existing 

literature on truck platoons and discussed the future research directions. Bevly et al. 

(2017) examined the feasibility of implementing driver-assisted truck platooning schemes 

with cooperative adaptive cruise control. It was found that truck platooning can 

successfully reduce fuel consumption by 5% - 7%.    

 

2.3.2 Platooning Behavior Models 

 

Platooning is a unique behavior feature of connected vehicles that can 

communicate with surrounding vehicles. Different from the automated vehicles that 

detect the gap and velocity of preceding vehicles, connected vehicles share the velocity 

and acceleration rate of the vehicles.  With such communication capability, CAVs can 

have shorter reaction times and headways, which can further reduce fuel consumption. 

(Xiao et al., 2016). Xiao et al. (2017) developed the CACC model to describe the car 

following behaviors of CAVs that can communicate with each other. However, the 

CACC model form only loosens platoons. Differing from this approach, several 

researchers developed car following behavior for vehicles inside platoons specifically.  

 

2.3.2.1 Virtual Platoon 

 

Some studies conveniently defined the platoon as the group of vehicles that travel 

through the intersections together or share a close headway.  

 

Feng et al. (2018) and Yu et al. (2018) developed a signal optimization scheme 

and trajectory planning scheme for CAVs in the convention intersections. They defined 

the vehicle platoons as a group of vehicles that can travel through the intersections. In 

this way, the vehicles that can pass the intersections entered the trajectory planning 

module together.  
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Ye et al. (2019) identified the vehicle platoons by their inter-distance and speeds. 

When the vehicles are close to each other and share a similar speed, they are grouped into 

a platoon for trajectory optimization whose aim is to minimize fuel consumption. With 

such a module, the computation burden is reduced since a group of vehicles can be 

regarded as a single unity for the trajectory optimization process.  

 

2.3.2.2 Optimized-based Platoon 

 

Wang et al (2020) established an MPC approach to model the platooning 

behaviors of CAVs. In this research, two solutions were proposed to obtain the optimal 

trajectories for vehicles inside a platoon and the solutions were applicable in real-world 

tests. Such a method can significantly reduce the computation time and improve the 

control efficiency according to the simulation results. In the case study, the CAV platoon 

whose leading vehicle’s trajectory was obtained from field data. The results demonstrated 

that the proposed model framework can dampen traffic oscillations efficiently and 

smooth the deceleration and acceleration behaviors for all following vehicles inside the 

platoon.  

 

Xiong et al (2021) developed a coordinated platooning strategy using a Markov 

decision process formulation. The optimal coordination strategy was threshold-based. A 

recursive approximation algorithm was proposed to compute the optimal strategy, which 

is superior to the generic value iteration algorithm. This strategy was also validated 

through traffic data.  

 

Utilizing the distributed algorithm for multi-users proposed by Koshal et al (2011), 

Gong et al. (2016) analyzed and obtained the solution for the optimization problem of 

CAV platoon control. The distributed algorithm was proved to provide the solutions 

efficiently for the control problem. Then this control strategy was demonstrated through 

extensive numerical simulations.  

 

Later, Gong and Du (2018) proposed a cooperative platoon control strategy for 

mixed traffic flow where CAV and HDV coexist. The movement of CAVs was controlled 

by One- or P- step model predictive control (MPC) models while the HDVs were 

modeled by the well-accepted Newell car-following models. Gong and Du (2018) also 

developed an online curve matching algorithm to anticipate the aggregated response 

delay of the HDVs. The MPC problem was solved by a distributed algorithm proposed by 

the authors. The numerical studies proved that the proposed algorithm can solve the One-

step and P-step MPCs problems quickly. Finally, the authors demonstrated that this 

cooperative platoon control strategy is superior to the non-cooperative control strategy 

and a latest CACC strategy.  

 

Dynamic programming was also employed in the platooning control of CAVs. 

Wei et al. (2017) established a novel control strategy and a family of efficient 

optimization models as well as algorithms to solve efficiently semi-open boundary 

conditions. The methods belong to the Proportional-Integral-Derivative (PID) category, 

in which the control input of an individual vehicle is calculated from a linear or nonlinear 
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function. The test results of the proposed model framework in different bottleneck 

scenarios revealed the efficiency of the proposed model and controlling reaction time as a 

new control variable.  

 

2.3.2.3 Model-based Platoon 

 

Bang and Ahn (2017) developed platooning scheme based on the spring-mass-

damper system. The acceleration rate was a function of the velocity of the preceding 

vehicle and the leading vehicle, and the positions in the platoons. The differences were 

weighted by the spring constant and damping coefficient respectively. The valid domains 

of control parameters were derived based on vehicles’ physical properties. This research 

also tested the different relationships between the control parameters and traffic flow, 

including maximum, quadratic, and cubic spring constants. The results showed that the 

maximum spring constant and flow with critical damping have the most efficient 

platooning. A cubic spring constant was desirable in light traffic conditions to allow 

proper lane changing.   

 

Rajamani et al. (2012) proposed a vehicle platooning controller that has been well 

accepted (Bian et al., 2019; Darbha et al., 2017; Darbha et al., 2018; Paden et al., 2016). 

With the same platooning control structure, Darbha et al. (2017, 2018) verified the 

minimum headway requirements in different connection levels (how much predecessor 

information can be received and whether the acceleration information is available). Bian 

et al. (2019) further proved that a platoon can be asymptotically and string stable when 

the time headway was lower-bounded, and this boundary could be reduced when more 

predecessors’ information was available. Overall, the popular safety assumption was that 

the minimum headway should be two times the communication delay, and CAV 

platooning could yield benefits when the minimum headway is less than 1s (Darbha et al., 

2018).  

 

2.3.2 Platooning Size 

 

The length of vehicle platooning is another research topic that receives 

considerable attention. When the vehicle platoon is traveling through the intersection, the 

number of vehicles that can pass through the intersection is limited, and the optimal 

number of vehicles that can pass through the intersection needs to be determined to avoid 

collisions or emergency brakes. Nevertheless, there is little research that has investigated 

platooning size. In the environment of the freeway, there is often no limitation on the 

platoon size. However, when CAVs are traveling through the intersection, the platoon 

size may not be exceedingly long to travel through the intersection.  

 

Zhao et al. (2018) developed a cooperative platooning control strategy for CAVs 

in terms of longitudinal movement on the urban road. This research tested different 

platoon sizes of CAVs including sizes of 1, 2, and 5 respectively. Considering the 

calculation burden and communication reliability in practice, the author set the maximum 

number of platoon sizes to be 5.  When the maximum platoon size was 1, the longitudinal 

trajectory only considered the individual vehicle. When the maximum platoon size was 2,  
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the optimization control only considered the fuel consumption of the subject vehicle and 

its direct following vehicle. When the maximum platoon size was 5, the optimization 

control was applied on the subject vehicle and its direct 4 following vehicles. The results 

showed that then overall performance was better when the maximum platoon size is 

larger.  

 

Guo and Ma (2021) tested the CACC control framework proposed by Liu et al. 

(2018) in the environment of the signalized corridor. This research examined the 

platooning performance with different maximum platoon lengths. The researchers tested 

the performance of 1, 3, 5, 8 and 10, and the results showed that a maximum platoon 

length of 10 yielded the largest throughput and minimal traffic delay.  

 

2.4 Trajectory Planning 

 

2.4.1 Introduction 

 

CAVs with trajectory guidance capabilities can travel on the road with certain 

optimal traffic measures such as fuel consumption, emissions, and fuel consumption. The 

trajectory planning problem is often formulated as an optimal control problem. The 

solution towards the optimal control problem often results in a non-linear optimization 

problem that can only be solved by either nonlinear programming methods or 

metaheuristic methods such as the genetic algorithm. Nevertheless, these methods 

inevitably bring challenges in real-world applications as significant computation 

resources may be required when the traffic demand is large.  

 

2.4.2 Pontryagin Minimum Principle Approach 

 

Wan et al., 2016 

The trajectory planning problems of CAVs usually took the minimizations of 

traffic efficiency and environmental impacts into consideration as the objectives. Wan et 

al. (2016) analyzed the property of the objective function through Pontragin Minimum 

Principles (PMP) and concluded that the optimal trajectories are bang-singular-bang 

control, which resulted in three segment speed trajectories. This research applied a two-

segment trajectory in which the vehicle first accelerates or decelerates to the target final 

speed and then cruises at the final speed to go through the intersection. This research 

employed the proposed trajectory planning strategy in the simulation platform, Paramics, 

and found that CAVs not only reduce their fuel consumption but also help to reduce the 

fuel consumption of other conventional vehicles. Nevertheless, the improvement in fuel 

economy was achieved with a little compromise in average traffic flow and travel time.  

 

Feng et al. 2018 

 

Feng et al. (2018) proposed an analytical approach to minimize the accumulated 

acceleration rates when CAVs were approaching the intersection. The optimal solution 

generally resulted in a three-segment trajectory, in which CAVs keep a constant speed in 
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the second segment and a constant maximum acceleration/deceleration rate in the first 

and third segments. The transition time point could be easily determined given the final 

time step, final speed, and initial speed. The proposed trajectory planning modeling 

framework was proved efficient through simulation tests under adaptive signal-controlled 

intersections. In the adaptive signal-controlled intersection, the traffic delay and fuel 

consumption were both reduced. The adaptive signal was controlled by the developed 

dynamic programming algorithm. The dynamic programming aimed to minimize the 

average travel time of CAVs. Moreover, this research also identified the proper 

maximum acceleration/deceleration rate in this research, which was 1.5 m/s. Also, 

trajectory planning was conducted on the leading vehicle of the defined platoon. The 

platoon was defined as the group of vehicles that can travel through the intersection 

within the same phase.  

Yu et al. 2018 

 

Building on Feng et al. (2018), Yu et al. (2018) proposed a mixed-integer linear 

programming method to optimize the trajectory and signal timing simultaneously. The 

optimization framework first incorporated the lane-changing movement. Vehicles were 

also split into platoons and were guaranteed to pass through the intersection at the desired 

speed. The simulation results demonstrated that the proposed actuated vehicle control 

framework could successfully reduce carbon dioxide emissions and traffic delays. In 

addition, the road capacity was also increased. This research also conducted a sensitivity 

analysis in the no-changing zones on the optimality of the proposed model.   

2.4.3 MDP Approach 

 

Zhao et al. 2018 

Model predictive control (MPC) is the popular approach to solving the trajectory 

planning problem of CAVs. Zhao et al. (2018) utilized this method to test CAV 

performances in an urban intersection with assumed different traffic demands. The 

trajectory planning strategy aimed to minimize the fuel consumption at the same time 

while ensuring the vehicle travel through the intersection at maximum speed. The 

resulting problem was then solved by Gauss pseudospectral method in the GPOPS 

package from MATLAB. Utilizing the proposed methods, the authors analyzed the 

properties of CAVs with different capabilities with small traffic scales. This method may 

nevertheless encounter challenges in applications as significant delays may occur in 

obtaining the optimized trajectories.  

2.4.4 Heuristic Approach 

 

Kamalanathsharma et al. 2015 

Green Light Optimal Speed Advisory system (GLOSA) is a system in the CAV 

environments where vehicles can continuously be guided at an optimal speed. 

Kamalanathsharma et al. (2015) extended the GLOSA system to a variable speed limit 

for each vehicle to minimize fuel consumption. This research utilized the Virginia Tech 

Comprehensive Power-Based Fuel Consumption Model (VT-CPFM) to obtain the fuel 

consumption instantaneously. The optimal speed limits for each vehicle were determined 



 

14 

 

by a dynamic programming algorithm and further incorporated into INTEGRATION 

(popular simulation software). The simulation results demonstrated the efficiency of the 

proposed modeling framework.   

Zhou et al., 2016 and Ma et al. 2016 

A parsimonious shooting heuristic method was proposed by Zhou et al. and Ma et 

al. Zhou et al. (2016) constructed the optimal control model framework and Ma et al. 

devised an efficient algorithm to solve the optimal control problem. Zhou et al (2016)  

proposed a systematic approach to obtain the optimal trajectories for CAVs approaching 

the urban signalized section considering kinematic limits, traffic arrival patterns, car 

following safety, and signal operations. A numerical sub-gradient-based algorithm with a 

shooting heuristic was developed to solve the proposed optimal control problem. 

Numerical experiments were conducted, and the results showed that the vehicle’s 

trajectories generated from the proposed method considerably outperform the ones from 

human drivers in terms of travel time, fuel consumption, and safety risk.  

Zhou et al. 2020 

Zhao et al. (2020) tested the CAV performances with different communication 

ranges. The CAVs were controlled with a bilevel optimization algorithm so that minimal 

traffic delay could be achieved when the CAVs were traveling through the intersection. 

The communication ranged from 100m to 500m with an interval of 100m. The results 

showed that the operational performances are better when the communication ranges 

were longer after 200m, which suggested that the communication range should be at least 

300m to ensure the traffic flow operates stably. The CAVs were also enabled with the 

platooning system, and the maximum number of platoons that can pass the intersection 

was identified when the communication range is 100m.   

 

Guo and Ma 2021 

 

The management framework of the signalized corridor with CAVs has also 

attracted certain interests. Guo and Ma (2021) introduced signal control and trajectory 

control with CAVs. In addition, this research also implemented the platooning concept 

for CAVs. The platooning control logic followed the work of Liu et al. (2018), in which 

CAVs switched to the CACC model when the distance to the preceding vehicle is less 

than 120 meters. Once the simulation started, the platooning control logic would initiate, 

and vehicles in the platoon started to run with CACC control. Then the trajectory of the 

leader vehicle was optimized with stage-wise trajectory control procedures, which was 

similar to Feng et al (2018) and Yu et al. (2018). An adaptive signal control was also 

proposed which essentially provided green extension when necessary. These models were 

tested in a corridor of three consecutive signalized intersections and the results showed 

that the traffic delay can be reduced compared to the benchmark scenarios. It was 

concluded that platooning is the most effective individual operational because it directly 

reduced the gaps between vehicles. Sensitivity analysis was conducted on the market 

penetration rate and platooning length.  
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2.4.5 Artificial Intelligence Approach 

 

Cheng et al. 2022 

Cheng et al. (2022) proposed a deep reinforcement learning approach to design 

the trajectory of CAVs in a mixed traffic environment where both CAVs and HDVs 

existed. The reinforcement learning approach was one of the popular machine learning 

methods that can be utilized in the optimal control problem. This approach had two 

important concepts, state, and action. The state represented the external environment that 

the smart agent was situated in and the action was the available actions that the smart 

agent could take. In the trajectory optimization problem, the smart agent was each CAV 

running on the road and the state could be the distance to the intersection, signal status, or 

else. The action was the acceleration rate of the subject vehicles and was associated with 

a reward. The reward was maximized through the neural network learning process in the 

work of Cheng et al. (2022). The simulation results showed that the proposed methods 

could reduce fuel consumption by 7.8% in a fixed signal timing.   

 

2.5 Signal Optimization under CAV Environments 

 

When vehicles are equipped with CAV technologies, it is convenient to assume 

the communication between CAV and signalized intersections. While signalized 

intersections optimize its phase duration and sequence, CAV can adjust trajectories based 

on its updated signal timing to improve the performance indicators. Currently, there are 

different methodology trends in terms of optimizing the signal timing. According to 

Qadri et al., (2020), these methods can be grouped into five categories, including 

artificial intelligence models, metaheuristics-based approaches, multi-objective-based 

approaches, dynamic/mixed-integer programming (MIP) based approaches, and 

miscellaneous approaches. Each of these approaches could further grow its branches. For 

example, artificial intelligence approaches could have neural network models and deep 

learning models. This research intended to employ a MIP-based approach to develop a 

signal optimization model, hence a review of existing studies for MIP-based signal 

optimization was summarized in Table 2.4. According to Table 2.4, it can be observed 

that the cell transmission model, Space-Phase-Time Hypernetwork based model, and 

green start/duration mixed-integer programming models are three popular approaches 

when modeling signal optimization problems.  

 

Table 2.4: Recent Studies on Signal Optimization with MILP Approaches 

Title Important assumption Authors Year 

An Enhanced 0–1 Mixed-Integer LP Formulation for 

Traffic Signal Control 
Cell Transmission Model Lin et al. 2004 

Distributed optimization and coordination algorithms 

for dynamic speed optimization of connected and 

autonomous vehicles in urban street networks 

Cell Transmission Model Tajalli, and Hajbabaie 2018 

A novel traffic signal control formulation Cell Transmission Model Hong K. Lo 1999 

A Cell-Based Traffic Control Formulation: Strategies 

and Benefits of Dynamic Timing Plans 
Cell Transmission Model Hong K. Lo 2001 

Recasting and optimizing intersection automation as a 

connected-and-automated-vehicle (CAV) scheduling 

Space-Phase-Time 

Hypernetwork 
Li and Zhou 2017 
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problem: A sequential branch-and-bound search 

approach in phase-time-traffic hypernetwork 

Solving simultaneous route guidance and traffic signal 
optimization problem using space-phase-time 

hypernetwork 

Space-Phase-Time 

Hypernetwork 
Li et al. 2015 

A mixed-integer programming formulation and 
scalable solution algorithms for traffic control 

coordination across multiple intersections based on 

vehicle space-time trajectories 

Space-Phase-Time 

Hypernetwork 
Wang et al. 2020 

Collaborative control of traffic signal and variable 

guiding lane for isolated intersection under connected 

and automated vehicle environment 

Green start and duration MIP Ding et al 2021 

A Platoon-Based Adaptive Signal Control Method 

with Connected Vehicle Technology 
Green start and duration MIP Li, et al. 2020 

 

2.5.1 Cell Transmission Model 

 

The cell transmission model was derived from Lighthill, Whitham, and Richards 

(LWR) model, which describes the dynamic relationship among traffic flow, density with 

respect to space, and time variables. Later, Daganzo (1994, 1995) proposed a simplified 

solution by assuming the traffic flow equals the minimum of three norms, i.e., the product 

of free speed and current density, inflow capacity, and the product of backward shock 

wave speed, and the difference between jam density and current density. Based on this 

formulation, the traffic delay was represented by the differences between the numbers of 

vehicles that had been left in the current cell between two successive time steps. The flow 

at the next time step could be equal to the saturated flow rate when the signal was green, 

and zero when the signal was red.  

 

Through the equations introduced above, researchers can easily construct a 

mixed-integer linear programming problem for the signal optimization problem (Hong K. 

Lo, 1999; Hong K. Lo, 2001; Lin and Wang 2004). However, this approach became 

unsuitable when it comes to the microscopic operation level, as it often involves a 

relatively larger simulation resolution (simulation step of 10s). 

 

2.5.2 Space-Phase-Time Hypernetwork Model 

 

Li et al. (2015) established a new approach to optimizing the traffic signals at in-

network levels. In this signal optimization, each link in the network was expanded from 

one dimension to two dimensions considering both the position and time step for each 

vehicle in the planning horizon. Each link was associated with a calculated cost that is 

largely determined by the travel time with free speed at the current time step within the 

horizon. Similar assumptions were also implemented for signal phases. All possible 

signal phases were expanded in the given planning horizon and represented by nodes. 

These graphical representations for the links and phases enabled researchers to establish 

the signal optimization model that was convenient for Lagrange relaxation. The derived 

formulations from Lagrange relaxation could be solved by either branch and bound 

algorithm or dynamic programming (Li and Zhou 2017; Li et al., 2015).  
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2.5.3 Green Start and Green Duration-based MIP 

  

Another popular approach for signal optimization is to optimize signal timing by 

taking the green start and green duration as the decision variable for each phase in an 

MLP model. In a connected environment, signal controllers are assumed to receive the 

estimated arrival information, and hence the traffic delay can be easily estimated by 

calculating the difference between the green start time and vehicle arrival time. 

 

Li et al (2020) constructed a signal optimization for the NEMA phase with a dual-

ring structure.  The phase boundaries and sequences were modeled as constraints in the 

MILP model and the objective was to minimize the traffic delay. One of the highlights in 

this research is that the researchers considered the arrival times of platoons instead of 

individual vehicles. However, the signal optimization model still yielded a signal timing 

plan with a fixed number of phases and phase sequence, which may limit the signal 

timing performance.  

 

Similarly, Ding et al (2021) also developed a signal timing optimization model in 

the connected environment with green start time and green duration as the decision 

variables. Particularly, this research selected the wasted green time as the objective to be 

minimized. The wasted green time was defined as the time difference between vehicle 

arrival time and green start, as described below. One of the merits of the model 

developed by Ding et al (2021) was that the phase sequence is flexible because of the 

introduction of the auxiliary binary variable indicating which phase was first between 

conflicting phases.   
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CHAPTER 3 METHODOLOGY 
3.1 Introduction 

 

Based on the literature review, it can be seen that the behaviors of CAVs require 

specific models to describe. This chapter attempts to model the car following, platooning, 

trajectory planning, and adaptive signal control. The following subsections provide more 

details about these models.  

 

3.2 Car-following Models 

 

3.2.1 IDM 

  

IDM was developed by Treiber et al. (2000). It is a collision-free model with 

intuitively measurable parameters. Due to these advantages, the IDM has been popularly 

used in modeling CAVs (Do et al., 2019; Liu and Fan, 2020; Yi et al., 2020). The 

acceleration rate in IDM is a function of the velocity of the subject vehicle, the gap to the 

preceding vehicle, and the velocity difference to the preceding vehicle, as Equation 

3.2.1.1 and Equation 3.2.1.2 show below:  

 

𝑎(𝑠, 𝑣, ∆𝑣) = 𝑎𝑚 (1 − (
𝑣

𝑣𝑑
)
∝

− (
𝑠∗(𝑣, ∆𝑣)

𝑠
)

2

)  (3.2.1.1) 

 

𝑠∗(𝑣, ∆𝑣) = 𝑠0 + 𝑣𝑇 +
𝑣 × ∆𝑣

2√𝑎𝑚𝑏
 (3.2.1.2) 

where 𝑎 indicates the acceleration rate; 𝑎𝑚 is the maximum acceleration rate; 𝑣 denotes 

the current speed; 𝑣𝑑 indicates the desired speed (assumed equal to the speed limit in this 

research);  ∆𝑣 represents the speed difference between the subject vehicle and its 

preceding vehicle; ∝ means the acceleration exponent, which is set as 4 in this research; 𝑠 
is the current headway between the subject vehicle and its preceding vehicle; 𝑠∗(𝑣, ∆𝑣) 
represents the minimum desired headway;  𝑠0 denotes the standing distances (2.5m); 𝑇 

represents the desired headway (1s); and 𝑏 is the desired deceleration rate. 

 

3.2.2 W99 Model 

 

W99 is a micro-simulation psychophysical model which has ten parameters 

available for calibration. These ten parameters are intuitively consistent with human 

driver behaviors with certain randomness (Durrani et al., 2016).  To ensure that the W99 

can represent the local traffic accurately, the ten parameters were calibrated to ensure that 

the average speeds on each approach in the simulation are matched with the ones that 

were from the field survey according to Hummer (2010).  

 

Considering the data availability, this research selects the minimal difference 

between simulated average speeds and observed average speed for each approach as the 
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objective function used in the calibration process. An overall difference within 15% is 

regarded as acceptable performance.   

 

(∑
|𝑣𝑜,𝑖 ∗ −𝑣𝑠,𝑖|

𝑣𝑜,𝑖
𝑁
𝑖 )

𝑁
(3.2.2.1)

 

 

where 𝑣𝑜,𝑖 and 𝑣𝑠,𝑖 are the observed and simulated average speed for approach 𝑖 
respectively, and 𝑁 indicates the total number of approaches.  

 

Genetic algorithm is utilized to minimize the difference between the observed 

average speeds and simulated average speeds for each approach. GA is a popular and 

efficient approach in calibrating the car-following model parameters. For brevity, this 

research skips the introduction of GA, and readers may refer to existing studies of GA 

calibration for more details (Ma and Abdulhai, 2002). The population size and the 

maximum number of generations are set as 10 and 20 respectively. The final difference 

becomes stable at 11%, which is recognized as an acceptable difference (Manjunatha et 

al., 2013). The obtained parameter values from GA are presented in Table 3.1.  The lane 

changing movement is controlled by the default car-following model in SUMO, i.e., 

LC2013 (Erdmann, 2015).  

 

TABLE 3.1: GA Calibrated W99 Parameter Values 
Parameters Interpretation Default Values Calibrated Values Value Range 

CC0 
average standstill 

distance (meter) 
1.4 1.287251 [0.1, 10.0] 

CC1 headway (seconds) 1.2 1.569918 [0.1, 5.0] 

CC2 
longitudinal oscillation 

(meters) 
8 1.28187 [0.1, 15.0] 

CC3 
start of deceleration 

process (seconds) 
-12 -12.3849 [-27.0, -5.0] 

CC4 
negative following 

threshold Δv(m/s) 
-1.5 -2.398 [-5.0, 0.0] 

CC5 
positive following 

threshold Δv(m/s) 
2.1 0.324976 [0.0, 5.0] 

CC6 
speed dependency of 

oscillation (10−4 rad/s) 
6 4.047425 [0.1, 11.0] 

CC7 
oscillation acceleration - 

m/s2 
0.25 0.29111 [0.0, 7.0] 

CC8 
acceleration rate when 

starting (m/s2) 
2 4.582238 [0.1, 7.0] 

CC9 
acceleration behavior at 

80 km/h (m/s2) 
1.5 4.261776 [0.1, 8.0] 

 

3.3 Platooning Control 

 

Vehicle platooning is one of the advanced features of CAVs. It can only be 

achieved with CAVs that have communication capabilities with other vehicles. Two 

assumptions were often made with CAVs platooning. One is shorter headways for 

vehicles inside a defined platoon, and the other is homogenous speeds. With shorter 

headways and homogenous speeds, the vehicles inside the same platoon can be regarded 
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as a single unity to travel on the road, which can increase the capacity of the roads and 

also reduce the computational complexity when trajectory planning is involved. This 

research has also adopted these concepts to fully release the potentiality of CAVs.  Two 

sets of platooning controls are defined in this research, namely platooning control I and 

platooning control II. The essential difference between platooning control I and 

platooning control II lies in that Platooning control II allows CAVs to dynamically adjust 

their distances to the preceding vehicles. 

 

3.3.1 Platoon Formulation and Splitting 

 

The platoon control system in this research iterates all active vehicles in the 

simulation environment and checks whether the neighboring vehicles meet the 

requirements for the platoon formulation. The requirements are that the vehicles: 

1) are in the same lane; 

2) stay within the range of a certain distance; and 

3) share the same path. 

 

If the requirements above are met, then the system can define such a group of 

vehicles as a platoon and thus share the same speed with the leading vehicle. However, if 

any of the vehicles inside the platoon fail to suffice these requirements, then the platoon 

splits up and switches back to the default car-following model. 

 

There is one more condition guaranteeing platoon splitting. When the platoon is 

approaching an intersection, the remaining green time 𝑔𝑝 may not be sufficient for all 

vehicles in a platoon to pass the intersection together, especially when the platoon size is 

large. Thus, to make the platoon system practical, the vehicles with platooning are 

assumed to have the knowledge of remaining green time. With the information on the 

remaining green time 𝑔𝑝, the platooning system checks whether all vehicles inside a 

platoon can pass the intersection or not through Equation (3.2.1.1),   

  

𝑔𝑝
𝑤 ≥

𝐷𝑡
𝑖

𝑣𝑡
𝑖
, 𝑖 ∈ 𝑷 (3.3.1.1) 

where 𝑔𝑝
𝑤denotes the remaining green time for the platoon 𝑷, 𝐷𝑡

𝑖 and 𝑣𝑡
𝑖 indicate the 

remaining distance towards the intersection and the speed of the 𝑖𝑡ℎ vehicle inside the 

platoon 𝑷 at the time step 𝑡. In the platoon 𝑷, when the 𝑖𝑡ℎ the vehicle cannot pass the 

intersection and the vehicle directly ahead of the 𝑖𝑡ℎ vehicle, i.e., 𝑖 − 1𝑡ℎ,  can pass the 

intersection, then the platoon 𝑷 disbands from the 𝑖 − 1𝑡ℎ vehicle. The vehicles after the 

 𝑖 − 1𝑡ℎ vehicle in the platoon 𝑷 would reform a platoon to decelerate together. When the 

platoons are approaching the intersection, the platooning system checks Equation (3.3.1.1) 

for each vehicle in the platoons at every time step. In this manner, the platoon system can 

avoid the situations where the platoon runs a red light because of its large platoon size.  

 

3.3.2 Platooning Control I 
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The vehicles inside a platoon share the same speed and keep a constant close 

distance in between. The platoon speed is naturally determined by the leading vehicle’s 

speed. The platoon attempts to set the following vehicles’ speeds the same as that of the 

leading vehicle within acceleration capacity in every time step. If the speed difference 

between the leading vehicle and the following vehicle exceeds the 

acceleration/deceleration capacity, the speeds of the following vehicles will execute the 

boundary speeds to match the leading vehicle’s speed as close as possible, as shown in 

Equation 3.3.2.1.  

 

𝑣𝑡
𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔

= {
max(𝑣𝑡−1

𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔
− 𝑎𝐿 , 𝑣𝑡−1

𝑙𝑒𝑎𝑑𝑖𝑛𝑔
) , 𝑖𝑓 𝑣𝑙𝑒𝑎𝑑𝑖𝑛𝑔 ≤ 𝑣𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔  

min(𝑣𝑡−1
𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔

+ 𝑎𝑈, 𝑣𝑡−1
𝑙𝑒𝑎𝑑𝑖𝑛𝑔

) , 𝑖𝑓 𝑣𝑙𝑒𝑎𝑑𝑖𝑛𝑔 > 𝑣𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔
(3.3.2.1) 

 

where 𝑣𝑡
𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔

 and 𝑣𝑡−1
𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔

 indicate the speed of the following vehicle at the time 

step 𝑡 and time step 𝑡 − 1 respectively, and 𝑣𝑡−1
𝑙𝑒𝑎𝑑𝑖𝑛𝑔

 denotes the speed of the leading 

vehicle at the time step 𝑡 − 1 . 

  

Indeed, in this system, the distance that guarantees a platoon formulation may 

have an important influence on the performance of the platooning system. Hence, this 

research also conducts a sensitivity analysis of this parameter. The selection of distance 

boundaries ranges from 5m to 31m with an increment of 4m. Each distance boundary has 

5 simulation runs and each simulation lasts for 900s (15 minutes).  This research obtains 

the traffic delay and fuel consumptions to determine the optimal searching distance. 

Figure 3.1 provides the average traffic delay and fuel consumption results for each 

distance boundary. According to Figure 3.1, it can be observed that both traffic delay and 

fuel consumption reach the minimum at the distance of 21m, and thus this research 

selects 21m as the distance boundary for further analyses.   

 
FIGURE 3.1: Performances of platooning with different values of distance 

boundaries 
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3.3.3 Platooning Control II  

Besides the platooning control introduced in Section 3.3.2, the model developed 

by Rajamani (2011) is also further incorporated in this research. Based on the literature 

review, platooning model developed by Rajamani (2011) was one of the most 

acknowledged platooning models because of tunable parameters and stable performance 

(Darbha et al., 2017; Darbha et al., 2018; Bian et al., 2019;). Therefore, this research 

employed such an approach to evaluate the impact of CAV platooning technology in the 

environment of superstreet. The full form of vehicle platooning model is presented as 

below,  

𝑥̈𝑑 = 𝑤1 ∗ 𝑥̈𝑖−1 + 𝑤2 ∗ 𝑥̈0 + 𝑤3 ∗ 𝜀̇ + 𝑤4 ∗ (𝑥̇𝑖 − 𝑥̇0) + 𝑤5 ∗ 𝜀𝑖 (3.3.3.1)  

𝜀𝑖 = 𝑥𝑖 − 𝑥𝑖−1 + 𝐿𝑖−1 + 𝑔𝑑  (3.3.3.2) 

𝜀𝑖̇ = 𝑥̇𝑖 − 𝑥̇𝑖−1 (3.3.3.3) 

where 𝑥̈𝑑 represents the control input for the subject vehicle in terms of acceleration rates. 

𝑥̈𝑖−1 and 𝑥̈0 denotes the acceleration rate for the preceding vehicle and the lead vehicle of 

the platoon. 𝑤1, 𝑤2, 𝑤3, 𝑤4, and 𝑤5 are the control gains for their corresponding terms, 

such as acceleration of the preceding vehicle 𝑥̈𝑖−1. 𝐿𝑖−1 indicates the vehicle length for 

the preceding vehicle (all vehicle lengths are assumed to be 5m in later experiments). 

Figure 3.2 presents the string of vehicles in a platoon. 

 
FIGURE 3.2: Sting of vehicles in a platoon 

The calculations for five control gains are shown below. 

𝑤1 = 1 − 𝐶1 (3.3.3.4) 

𝑤2 = 𝐶1 (3.3.3.5) 

𝑤3 = −(2 ∗ 𝜉 − 𝐶1 ∗ (𝜉 + √𝜉2 − 1)) ∗ 𝑤𝑛 (3.3.3.6) 

𝑤4 = −𝐶1 ∗ (𝜉 + √𝜉2 − 1) ∗ 𝑤𝑛 (3.3.3.7) 

𝑤5 = −𝑤𝑛
2 (3.3.3.8) 
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where 𝐶1 is the weighting factor for the acceleration rates of the leader and the preceding 

vehicle respectively. 𝜉 is the damping ratio and 𝑤𝑛 is the control bandwidth. Among 

these parameters, 𝐶1, 𝜉 and 𝑤𝑛 are tuning parameters that can be adjusted for research 

needs.  Table 3.2 shows the default parameter values that are used in this research. 

Platoons are only detectable within a certain distance, thus platooning control can only 

apply to the vehicles that are within a distance boundary 𝐷𝑏. According to (Segata et al., 

2014), 20 m is a proper boundary for platooning control. Table 3.2 shows a summary of 

the values utilized in this research for the platooning control.   

  

TABLE 3.2: Default Values for Platooning Control Parameters 

Parameters Default values 

Damping ratio 𝝃 1 

Bandwidth 𝒘𝒏 0.2 Hz 

Acceleration weighting factor 𝑪𝟏 0.5 

Desired gap 𝒈𝒅 5 m 

Distance boundary for platooning 𝑫𝒃 20 m 

 

A small numerical simulation was conducted to test the effectiveness of 

platooning model given the default values. Assume a preceding vehicle and a leader 

vehicle with a speed of 20 𝑚/𝑠 and acceleration of 0 𝑚/𝑠2. A third following vehicle is 

initiated with a speed of 15 𝑚/𝑠 and a gap to the preceding vehicle of 20 𝑚 . Figure 3.3 

shows how the vehicle catches up with the platoon of two vehicles using this platooning 

control system.  From Figure 3.3, one can see the platooning control can reduce gap error 

𝜀 from 15m to 0m in about 30s. Moreover, platooning control system could maintain the 

desired gap size throughout the whole trip.  This result validates the platooning control 

system in this research.  

  
FIGURE 3.3: Numerical test for platooning model performance 

Some other practical considerations need to be added in a large-scale microscopic 

simulation in this research. First, the vehicles can enter a platoon only when they share 
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the same next route, which means that if the platoon is going to turn left in the upcoming 

intersection, then only the vehicles that also turn left are allowed to join the platoon and 

keep a close following distance. Second, the vehicles can enter a platoon only when they 

share the same lane. If the vehicle inside the platoon violates these two rules at a certain 

time step, then the platoon will disband, and the rest of the vehicles may reformulate a 

platoon if they meet the above requirements. 

 

CAVs should also be controlled by the default car following model when CAVs 

are approaching the signalized intersection. CAVs controlled by platooning mode 

illustrated by Eq (3.3.3.1-3.3.3.8) result in a slow approaching rate to stopped preceding 

vehicles, which are often seen in closely spaced signalized intersections such as 

superstreet. Figure 3.4 illustrates the motivation for this consideration assuming that two 

CAVs with two different controls are approaching a stopped vehicle at a distance of 

100m at the intersection. CAVs controlled by IDM reaches the converged distance (IDM 

default desired gap 2.5m) in 20𝑠 while it takes 30𝑠 for the platooning control to reach the 

desired distance (platoon default desired gap 5m).  If a CAV with platooning control 

approaches the waiting vehicles in front of intersections in a medium/high traffic volume 

scenario, this CAV will inevitably block other vehicles in the middle of the road. This 

prevents us from applying the same platooning control logic throughout the simulation.  

 
FIGURE 3.4: Gap plot for CAV approaching a stopped vehicle with platooning 

control and IDM control 

Based on the above discussions, the CAVs approaching the signalized intersection 

in the same lane, are bunched together (when their inter distance is less than 1s headway 

plus minimum gap, i.e., 2.5m) by sharing the same speed as their platoon leaders to pass 

the intersection. This design can achieve a similar effect as curve matching algorithms 

proposed in Gong and Du (2018) and trajectory copy in Han et al. (2020). After the 

CAVs exit the intersection, platoon control starts to take effect to adjust their headways 

properly. This research also implements the platoon split as introduced in Han et al. 

(2020) when the green duration is not sufficient for the whole platoon to travel through.   
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3.4 Trajectory Planning I with Fixed Signal Timing 

 

3.4.1 Optimal Trajectory Based on Accumulated Absolute Acceleration Rates 

 

CAVs can plan their trajectories based on the signal information obtained to 

achieve a certain objective, such as minimizing fuel consumption or traffic delay. The 

popular approach is to formulate trajectory planning as an optimal control problem whose 

objective can be a certain traffic performance measure. When the goal is to minimize fuel 

consumption or emissions, the objective function often takes a non-linear form and 

requires non-linear programming to obtain an optimal solution. Significant computational 

resources may be required in the real world. A substitute approach to achieving the 

optimal fuel consumption or emissions benefit is to minimize accumulated absolute 

acceleration rates along the trajectories according to Feng et al. (2018).  First, a 

generalized trajectory planning problem of CAVs can be formulated with the objective of 

minimizing cost 𝑪.  

 

min𝑪 (𝑎, 𝑣) (3.4.1.1) 

{
𝑥̇(𝑡) = 𝑣(𝑡)

𝑣̇(𝑡) = 𝑎(𝑡)
 (3.4.1.2) 

{
𝑥(𝑡0) = 0

𝑣(𝑡0) = 𝑣0
(3.4.1.3) 

{
𝑥(𝑡𝑓) = 𝐷

𝑣(𝑡𝑓) = 𝑣𝑓
(3.4.1.4) 

−𝑎𝐿 ≤ 𝑎(𝑡) ≤  𝑎𝑈, (3.4.1.5) 
0 < 𝑣(𝑡) < 𝑣𝑚𝑎𝑥  (3.4.1.6) 

𝑡0 ≤ 𝑡 ≤ 𝑡𝑓 𝑎𝑛𝑑 𝑡𝑓 fixed (3.4.1.7) 
 

where  𝑪(𝑎, 𝑣) represents the cost function, 𝑥(𝑡) and 𝑣(𝑡) are control variables that 

indicate the traveled distance and instant speed value at the time step 𝑡 respectively.  𝑎(𝑡) 
is the control variable that represents the acceleration rate at time step 𝑡. 𝑡0 and 𝑡𝑓 are the 

time steps when the CAVs start and finish the trajectory respectively. 𝐷 is the target 

distance that the subject vehicle needs to travel, which often is the distance between the 

vehicle and the intersection. The fuel consumption or emission is known to be 

significantly related to the acceleration rates. Feng et al. (2018) developed a trajectory 

planning strategy to minimize fuel consumption based on Pontryagin’s Minimum 

Principle (PMP). Through analysis of PMP, a generalized solution can be achieved with 

the objective of minimizing the accumulated absolute acceleration rates along the 

trajectory, which is  

min𝑪 =  ∫ |𝑎(𝑡)|𝑑𝑡
𝑡𝑓

𝑡0

(3.4.1.8) 

 

The solution to the optimal trajectory generally results in a three-segment 

trajectory, in which vehicles remain at a constant speed at the second segment. The first 

and the third segment have a constant either maximum acceleration or deceleration rate 

according to the relationship between the initial speed or final speed, as Figure 3.5a 
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shows.  Figure 3.5b provides an example comparison of when CAVs are enabled with 

and without such trajectory planning feature.  

 
a. Theoretical three-segment trajectory in deceleration case (revised from Feng et al. 

(2018) 

 
a. Three-segment trajectory in simulation 

 

FIGURE 3.5: A general optimal trajectory for the deceleration scenario 

The transition time steps 𝑡1 and 𝑡2 can be determined given the following 

equations in the deceleration case (𝑣0 > 𝑣𝑓) and acceleration case (𝑣0 < 𝑣𝑓) respectively.   

 
𝑣0 + 𝑣𝑐
2

∗ 𝑡1 + 𝑣𝑐 ∗ (𝑡2 − 𝑡1) + 
𝑣𝑓 + 𝑣𝑐

2
∗ (𝑡𝑓 − 𝑡2) = 𝐷 (3.4.1.9) 
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𝑣𝑐 = {
𝑣0 − 𝑎𝐿 ∗ 𝑡1 = 𝑣𝑓 + 𝑎𝐿 (𝑡𝑓 − 𝑡2), 𝑣0 > 𝑣𝑓

𝑣0 + 𝑎𝑈 ∗ 𝑡1 = 𝑣𝑓 − 𝑎𝑈 (𝑡𝑓 − 𝑡2), 𝑣0 < 𝑣𝑓
(3.4.1.10) 

 

Additionally, one can obtain the lower and upper travel time boundary to 

guarantee that a feasible solution exists as shown below: 

 

𝑣0 > 𝑣𝑓

{
 
 

 
 𝑡𝐿 =

𝐷

𝑣0
+
(𝑣0 − 𝑣𝑓)

2

2 ∗ 𝑣0 ∗  𝑎𝐿

𝑡𝑈 = 
𝐷

𝑣𝑓
−
(𝑣0 − 𝑣𝑓)

2

2 ∗ 𝑣𝑓 ∗  𝑎𝐿

(3.4.1.11) 

 

𝑣0 < 𝑣𝑓

{
 
 

 
 𝑡𝐿 =

𝐷

𝑣𝑓
+
(𝑣0 − 𝑣𝑓)

2

2 ∗ 𝑣𝑓 ∗  𝑎𝑈

𝑡𝑈 = 
𝐷

𝑣0
−
(𝑣0 − 𝑣𝑓)

2

2 ∗ 𝑣0 ∗  𝑎𝑈

(3.4.1.12) 

 

Notably, a feasible three-segment trajectory solution only exists when the vehicle 

arrival time 𝑡𝑓 is strictly within the boundary of 𝑡𝐿 and 𝑡𝑈, i.e.,   

 
𝑡𝐿 < 𝑡𝑓 < 𝑡𝑈 (3.4.1.13) 

 

When 𝑡𝑓 = 𝑡𝐿 or 𝑡𝑓 = 𝑡𝑈, the three-segment trajectory solution collapses into the 

two-segment trajectory. The lower/upper-time boundaries indicate two-segment 

trajectories in acceleration and deceleration respectively as shown in Figure 3.6. In a 

deceleration scenario, the lower boundary indicates that the vehicle keeps its current 

speed in the first segment and then decelerates to its final speed in the second segment. 

The upper boundary indicates that the vehicle first decelerates to the target final speed, 

and then keeps the target final speed until it arrives at the intersection. On the other hand, 

in an acceleration scenario, the lower boundary indicates that the vehicle first accelerates 

the final speed 𝑣𝑓 and then cruises at the target speed until arriving at the intersection. 

When the final speed 𝑣𝑓  is equal to the maximum speed 𝑣𝑚𝑎𝑥 , such trajectory type can 

yield the minimum travel time 𝑡𝑚𝑖𝑛𝑖𝑚𝑢𝑚 and thus is referred to as the minimum travel 

time trajectory. The upper boundary in an acceleration scenario means that the vehicle 

first keeps its initial speed and then accelerates to its target speed. Intuitively, when the 

travel time is strictly within the lower- and upper-time boundaries, then an optimal three-

segment trajectory exists. When the travel time is equal to one of the two boundary 

values, a two-segment trajectory introduced above can be applied. Nevertheless, when 

travel time exceeds the boundary, no feasible solution exists with the given distance, 

acceleration rate, and initial speeds.  This reflects the real-world scenarios.  For example, 

a vehicle may not be able to decelerate to a speed of zero if the remaining distance to the 

intersection is too short or the initial speed is too high.   
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a. 𝑡𝑓 = 𝑡𝑈 𝑎𝑛𝑑 𝑣0 > 𝑣𝑓 b. 𝑡𝑓 = 𝑡𝐿𝑎𝑛𝑑 𝑣0 > 𝑣𝑓 

  

c. 𝑡𝑓 = 𝑡𝐿 𝑎𝑛𝑑 𝑣0 < 𝑣𝑓 d. 𝑡𝑓 = 𝑡𝑈 𝑎𝑛𝑑 𝑣0 < 𝑣𝑓 

 

FIGURE 3.6: Two-segment trajectory when 𝒕𝒇 equals to boundary values 

(𝒕𝑳 𝒂𝒏𝒅 𝒕𝑼) 

Feng et al. (2018) demonstrated that this trajectory planning strategy could 

successfully reduce traffic delay and fuel consumption in a standard isolated conventional 

intersection with a joint adaptive signal optimization algorithm. With the adaptive signal 

control, Equation 3.4.1.13 holds for most cases and the vehicle can avoid stops under 

certain traffic conditions. Nevertheless, this strategy cannot be directly transferred to a 

fixed signal-controlled intersection. In a fixed signal-controlled intersection, the final 

travel time 𝑡𝑓 is largely dependent on the initiation time or remaining time of the target 

green phase in a fixed signal timing plan, where vehicles cannot avoid stopping entirely. 

To apply this trajectory planning scheme in a fixed signal-controlled intersection, this 

research also considers a constant deceleration trajectory when Equation 3.4.1.13 cannot 

be sufficient. For a constant deceleration trajectory, the vehicle will keep a constant 

deceleration rate until it arrives at the intersection with a speed of 0, as shown in Figure 

3.7. The deceleration rate 𝑎𝑑𝑒𝑐 can be easily obtained through the basic kinetic law, 

which is described by Equation 3.4.1.14.   

𝑎𝑑𝑒𝑐 =
𝑣0
2 ∗ 𝐷
𝑣0

 (3.4.1.14)
 

Based on the signal status and the next signal switch time 𝑡𝑠𝑤𝑖𝑡𝑐ℎ, the vehicle can choose 

different speed trajectories as introduced above.  
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FIGURE 3.7: Constant deceleration trajectory 

3.4.2 Trajectory Planning at the Red Signal 

 

When the upcoming signal status for the subject vehicle is red, the signal switch 

time 𝑡𝑠𝑤𝑖𝑡𝑐ℎ indicates the initiation of green time. The lower time boundary obtained 

through Equation 3.4.1.12 is equal to the minimum travel time 𝑡𝑚𝑖𝑛𝑖𝑚𝑢𝑚  when the given 

final speed 𝑣𝑓 = 𝑣𝑚𝑎𝑥. If the switch time 𝑡𝑠𝑤𝑖𝑡𝑐ℎ is less than or equal to the 𝑡𝑚𝑖𝑛𝑖𝑚𝑢𝑚, 

then the vehicle can meet a green signal with a two-segment trajectory as shown in 

Figure 3.8 to achieve minimal traffic delay.   

 
FIGURE 3.8: Speed trajectory with minimum travel time  

If the switch time is greater than the minimum travel time, i.e., 𝑡𝑠𝑤𝑖𝑡𝑐ℎ ≥
𝑡𝑚𝑖𝑛𝑖𝑚𝑢𝑚,  then the vehicle with a minimum travel time trajectory will meet a red signal. 

In this situation, it is assumed that 𝑡𝑓 = 𝑡𝑠𝑤𝑖𝑡𝑐ℎ. From Equation 3.4.1.11 and Equation 
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3.4.1.12, one may obtain 𝑡𝐿and 𝑡𝑈 given a final speed 𝑣𝑓 . Hence, researchers may simply 

enumerate all possible final speeds [0, 𝑣𝑚𝑎𝑥) to obtain feasible speed candidates 𝑽𝒇 so 

that Equation 3.4.2.1 stands. 

 

𝑡𝐿 < 𝑡𝑠𝑤𝑖𝑡𝑐ℎ < 𝑡𝑈 (3.4.2.1) 
 

This research selects the max (𝑽𝒇) so that the subject vehicle can travel through 

the intersection with maximum final speed to minimize the traffic delay, where the 

max () function returns the maximum value among the feasible final speed list 𝑽𝒇 .  

 

3.4.3 Trajectory Planning at Green Signal 

 

If the ahead signal status is green, then  𝑡𝑠𝑖𝑔𝑛𝑎𝑙 𝑠𝑤𝑖𝑡𝑐ℎ  indicates the remaining 

green time for the subject vehicle. This research mainly considers two cases based on the 

relationship between signal switch time 𝑡𝑠𝑖𝑔𝑛𝑎𝑙 𝑠𝑤𝑖𝑡𝑐ℎ and minimum travel time 𝑡𝑚𝑖𝑛𝑖𝑚𝑢𝑚 

of the subject vehicle. 

 

Case 1: when the subject vehicle can traverse through the intersection with 

minimum travel time 𝑡𝑚𝑖𝑛𝑖𝑚𝑢𝑚  (i.e.,  𝑡𝑠𝑖𝑔𝑛𝑎𝑙 𝑠𝑤𝑖𝑡𝑐ℎ ≥ 𝑡𝑚𝑖𝑛𝑖𝑚𝑢𝑚), then the vehicle may 

accelerate its maximum speed to pass the intersection to achieve the minimal traffic delay. 

However, this strategy may potentially increase the average fuel consumption as the fuel 

consumption is closely related to the acceleration rate. In some circumstances, if the 

𝑡𝑠𝑖𝑔𝑛𝑎𝑙 𝑠𝑤𝑖𝑡𝑐ℎ ≥ 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑝𝑒𝑒𝑑, where 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑝𝑒𝑒𝑑 is the travel time to the intersection 

when the vehicle keeps its current speed, then the decision-makers who assign a higher 

priority on fuel consumption may let the vehicle keep its current speed to avoid 

increasing fuel consumption with acceptable compromise on the traffic delay.  

 

Case 2: 𝑡𝑠𝑖𝑔𝑛𝑎𝑙 𝑠𝑤𝑖𝑡𝑐ℎ ≤ 𝑡𝑚𝑖𝑛𝑖𝑚𝑢𝑚 means the subject vehicle cannot arrive at the 

intersection with the given remaining green time even if the vehicle accelerates to 

maximum speed. In such a situation, a constant deceleration trajectory introduced above 

may be executed. The subject vehicle may need to check whether the vehicle can meet 

the second green with a given final speed within [0 𝑣𝑚𝑎𝑥) when the distance 𝐷 is large.  

 

3.4.4 Encountering Preceding Vehicles during Trajectory Planning 

 

In the real world, the vehicles may be close to preceding vehicles on the road, and 

following the predetermined trajectories may lead to collisions with the preceding 

vehicles. Therefore, to avoid these collisions in this research, when a vehicle has 

preceding vehicles that are within a 3𝑠 headway, the vehicle will stop executing the 

planned trajectory and switch to the predefined car-following model, which is the IDM in 

this research. Note that the system constantly checks each vehicle’s distance to the 

preceding vehicles at each time step. When the distance to the preceding vehicle is 

greater than 3𝑠 and there is an upcoming signalized intersection, then the system will 

plan the vehicle trajectory again for the subject vehicle to follow. With this function, the 

vehicles following the planned trajectory can successfully avoid collision with not only 
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the close preceding vehicles but also the queueing vehicles in front of the intersection 

because of the red signal.  

 

3.5 Adaptive Signal Control 

 

 This research conducts preliminary research on the potential impact of adaptive 

signal control to leverage the communication between CAVs and signalized intersection. 

The adaptive signal control in this research can update its phasing duration and phase 

sequence according to the arrival information of CAVs.  

 

3.5.1 Signal Optimization with MILP 

 

Adaptive signal control leverages the communication between CAVs and 

signalized intersection. The adaptive signal control in this research can update its phasing 

duration and phase sequence according to the arrival information of CAVs. 

   

The adaptive signal control model was developed based on the work of Ding et al. 

(2021). In Ding et al (2021), mixed-integer quadratic programming (MIQP) was 

developed for CAV platoons based on the arrival times of platoon leaders and platoon 

length, i.e., the number of vehicles. The formulation of the MIQP model allows for a 

flexible phasing sequence with the introduction of Big M and auxiliary binary variables. 

This research utilizes the flexible phase sequence concept in the following mixed-integer 

linear programming (MILP) formulation. Table 3.3 illustrates the symbols that are used 

in the following sections.  

 

TABLE 3.3: Descriptions on Symbols Employed in Signal Optimization Modeling 

Descriptions Symbols 

Green start 𝑆𝑇 

Green duration 𝐺 

Vehicle arrival time list 𝐴 

Traffic delay 𝐷 

Function returning the length of the arrival 

time list, i.e., the number of vehicles 𝑁() 

Total number of phases 𝑃 

Cycle length 𝐶 

Number of lanes 𝐿𝑛 

Average headway ℎ 

Green duration set required by movements 𝐺𝑀 

Minimum clearance interval 𝑐 
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The delay for vehicle 𝑖 with a target phase 𝑝 is defined as the time differences between 

the green start time 𝑆𝑇𝑝 and vehicle arrival time 𝐴𝑖,𝑝, where 𝑝 ∈ 𝑃 and 𝑖 ∈ 𝐴𝑝 

𝐷𝑖,𝑝 = {
𝑆𝑇𝑝 − 𝐴𝑖,𝑝 ;    𝑖𝑓 𝑆𝑇𝑝 − 𝐴𝑖,𝑝 ≥ 0,

0; 𝑖𝑓 𝑆𝑇𝑝 − 𝐴𝑖,𝑝 < 0
(3.5.1.1) 

The arrival time of vehicle 𝑖 can be estimated by the remaining distance 𝑙𝑖 divided by the 

current speed 𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑖 

𝐴𝑖,𝑝 =
𝑙𝑖

𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑖
 (3.5.1.2) 

Naturally, the objective function can be identified as the total accumulated delay from all 

the vehicles and all phases in the intersection at the current time step, i.e.,  

min   ∑ ∑ 𝐷𝑖,𝑝
𝑖∈𝐴𝑝𝑝∈𝑃

 (3.5.1.3) 

where 𝑃 is the total number of phases for the target intersection. Two crucial parameters 

in signal control logic are phase sequences and phase duration. Phase duration 𝐺𝑝 can be 

easily determined based on traffic demand from all the movements belonging to phase 𝑝. 

Assuming traffic movement 𝑚 is governed by phase 𝑝, the green duration required by 

movement 𝑚 can be calculated as  

𝐺𝑚 =
𝑁(𝐴𝑚)

𝐿𝑛𝑚
∗ ℎ, 𝑚 ∈ 𝑝  (3.5.1.4) 

where 𝐺𝑚 denotes the green duration required by the movement 𝑚 and 𝐴𝑚 contains the 

vehicle arrival times for movement 𝑚 that has the target phase 𝑝. 𝑁 denotes the function 

that returns the length of the arrival time list, i.e. number of the vehicles. 𝐿𝑛𝑚 represents 

the number of lanes available for movement 𝑚. Let 𝐺𝑀,𝑝 contain the green duration set 

required by each movement from phase 𝑝, then the green duration for phase 𝑝 should 

suffice the critical traffic movement volume for phase 𝑝, i.e.,  

𝐺𝑝 ≥ max(𝐺𝑀,𝑝) (3.5.1.5) 

Different phase sequences may cause significant performance changes in the 

traffic operations. Hence, this research utilizes the binary earlier indicator Ω. For a pair of 

conflicting phases, 𝑝 and ¬𝑝, one can have constraints as shown below,  

Ω𝑝,¬𝑝 + Ω¬𝑝,𝑝 = 1 (3.5.1.6) 

Specifically, Ω𝑝,¬𝑝 equals to 1 when phase 𝑝 turns green in advance of phase ¬𝑝, which 

is the conflicting phase for phase 𝑝. In contrast, Ω𝑝,¬𝑝 equals to zero when phase 𝑝 turns 

green after its conflicting phase ¬𝑝 turns green.   

This research employs the formulation proposed by Ding et al. (2021) to enforce 

the constraint that conflicting phases do not start simultaneously. In addition, the time 

difference between conflicting phases should also take into account the minimum 

clearance time. Therefore, one can have the constraints as follows, 

𝑆𝑇𝑝 +𝑀 ∗ Ω𝑝,¬𝑝 ≥ 𝑆𝑇¬𝑝 + 𝐺¬𝑝 + 𝑐 (3.5.1.7) 
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𝑆𝑇¬𝑝 +𝑀 ∗ Ω¬𝑝,𝑝 ≥ 𝑆𝑇𝑝 + 𝐺𝑝 + 𝑐 (3.5.1.8) 

In this research, it is assumed that the minimum clearance time is 2s.  To ensure that the 

planned signal timing can suffice the vehicle arrivals at the current time step, the sum of 

the green start and green duration should be greater than the latest arrival time, i.e.,  

𝑆𝑇𝑝 + 𝐺𝑝 ≥ max(𝐴𝑝) + ℎ (3.5.1.9) 

However, this constraint may cause the green start and green duration to become 

unexpectedly large, hence, penalties are added towards green duration and green start in 

the objective function, which results in the final objective function as presented below. 

min   ∑ ∑ 𝐷𝑖,𝑝
𝑖∈𝐴𝑝𝑝∈𝑃

+ 𝑤𝐺 ∗∑𝐺𝑝
𝑝∈𝑃

+ 𝑤𝑆𝑇 ∗∑𝑆𝑇𝑝
𝑝∈𝑃

 (3.5.1.10) 

The 𝑤𝐺 and 𝑤𝑆𝑇 are the penalty weights for the green start and green duration 

respectively. These two weights need to be less than 1 since the main objective is to 

minimize the traffic delay. Hence, this research selects 0.1 for these two weight values. 

Since the sum of the weights needs to be equal to 1, this leaves the weight for traffic 

delay 𝑤𝑑 as 0.8. To sum up, the full form of the MILP model for signal optimization is 

presented below:  

    

min   𝑤𝑑∑∑ 𝐷𝑖,𝑝
𝑖∈𝐴𝑝𝑝∈𝑃

+ 𝑤𝐺 ∗∑𝐺𝑝
𝑝∈𝑃

+ 𝑤𝑆𝑇 ∗∑𝑆𝑇𝑝
𝑝∈𝑃

 (3.5.1.11) 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: 𝐷𝑖,𝑝 = max(𝑆𝑇𝑝 − 𝐴𝑖,𝑝, 0) 

𝐴𝑖,𝑝 =
𝑙𝑖

𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑖
 

𝐺𝑝 ≥ max(𝐺𝑀) 

𝑆𝑇𝑝 +  𝐺𝑝 ≥ max(𝐴𝑝) + ℎ 

Ω𝑝,¬𝑝 + Ω¬𝑝,𝑝 = 1 

𝑆𝑇𝑝 +𝑀 ∗ Ω𝑝,¬𝑝 ≥ 𝑆𝑇¬𝑝 + 𝐺¬𝑝 + 𝑐 

𝑆𝑇¬𝑝 +𝑀 ∗ Ω¬𝑝,𝑝 ≥ 𝑆𝑇𝑝 + 𝐺𝑝 + 𝑐 

The above optimization model has a MILP form that is convenient for popular 

commercial solvers to solve, such as CPLEX or Gurobi. This research uses Gurobi to 

obtain the solution in real-time.  

 

3.5.2 Additional Practical Considerations for Adaptive Signal Control 

 

Rolling Horizon Scheme 

 

Since vehicle arrivals vary at different periods at the microscopic level, it is often 

necessary to utilize a rolling horizon scheme to update the vehicle arrival information and 
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signal timings. In this research, the vehicle arrival information and signal timing are 

updated as soon as all vehicles in the previous cycle finished traveling through the 

intersection. This rolling horizon scheme is also illustrated in Figure 3.9, where 𝐶𝑛 

denotes the cycle length for the 𝑛𝑡ℎ cycle. The initial time for each cycle is reset as zero. 

 
FIGURE 3.9: Rolling horizon scheme illustration 

Filling up Cycle in Low Traffic Volume Scenarios 

 

Although the proposed signal optimization model can continuously yield the 

optimal signal timings for vehicle arrivals in time step 𝑡, there are some extreme traffic 

scenarios that deserve attentions. In low traffic volumes, there may be no traffic for a 

considerable time periods for a particular approach, and the designed signal optimization 

scheme may produce frequent but unnecessary signal switches between conflicting 

phases. Though these unnecessary signal switches do not compromise the traffic delay, 

they may cause confusions to other road users and extra wear for the signal displaying 

equipment in real-world deployment. Therefore, when all detected vehicles belong to one 

phase in an intersection at time step 𝑡, the targe phase fills up all planned cycle length. 

Figure 3.10 illustrates this filling up cycle process.  

      

 
FIGURE 3.10: Filling up cycle procedure 

Emergency Release in High Traffic Volume Scenarios 

 

In extreme high traffic volume scenarios, the minimal-traffic-delay oriented signal 

timing plan may cause vehicles from minor approaches to wait excess long periods. 
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When vehicles have waited for two standard cycle lengths (120𝑠 × 2 for this research) in 

front of the intersection, the signal should turn green for a sufficient duration (3𝑠) so that 

the vehicle can pass the intersection. This operation also reflects the equity principle in 

traffic operations. Figure 3.11 presents the overall workflow for this adaptive signal 

control.  

 
FIGURE 3.11: Overall flow chart for optimized signal timing procedures 
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3.5.3 Trajectory Planning with Adaptive Signal Control 

 

For the trajectory planning under adaptive signal control, this research employs 

the Ding et al. (2021) model to explore the impact of CAVs. Ding et al. (2021) developed 

the trajectory planning based on the work of Feng et al. (2018), in which three-segment 

trajectory planning was proven to be an efficient approach to reducing traffic delay while 

preventing that fuel consumption increases. To avoid unstable traffic flow, Ding et al. 

(2021) further simplified this approach by only considering three-segment acceleration 

trajectories (two segment trajectory is a special case of three-segment trajectory when the 

green start time is equal to the boundary value, refer to Feng et al. (2018) and Ding et al. 

(2021) for more details). The discussion on trajectory planning varies based on the 

relationship between the earliest arrival time of vehicle 𝑖 and the optimized green start 

𝑆𝑇𝑝. The earliest travel time 𝑖𝑝
𝑒 is when the vehicle accelerates with the maximum 

acceleration rate until it reaches the speed limit, it travels through the intersection with 

the speed limit. Equation (3.5.3.1) shows the calculation of 𝑖𝑝
𝑒. 

 

 

𝑖𝑝
𝑒 =

{
 
 

 
 √(𝑣𝑐𝑢𝑟𝑒𝑛𝑡,𝑖,𝑝)

2
+ 2𝑎𝑈𝑙𝑖,𝑝 − 𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑖,𝑝

𝑎𝑈
, 𝑙𝑖,𝑝 <

𝑣𝑓
2 − 𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑖,𝑝

2

2𝑎𝑈

(𝑙𝑖,𝑝 −
𝑣𝑓
2 − 𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑖,𝑝 

2

2𝑎𝑈
)/𝑣𝑓 +

𝑣𝑓 − 𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑖,𝑝

𝑎𝑈
, 𝑙𝑖,𝑝 ≥

𝑣𝑓
2 − 𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑖,𝑝

2

2𝑎𝑈

 (3.5.3.1) 

 

Case 1：𝑆𝑇𝑝 ≤ 𝑖𝑝
𝑒 

 

When the green start time for phase 𝑝 is less than the earliest arrival time of 

vehicle 𝑖, 𝑖𝑝
𝑒, the vehicle can meet a green signal with its fastest speeds, 𝑣𝑓. In such case, 

the vehicle may accelerate from its current speed 𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑖,𝑝 with its maximum 

acceleration capability 𝑎𝑈 to the speed limits instantly, and then cruise at its maximum 

speed to travel through the intersection. The time required to accelerate to 𝑣𝑓 can be 

obtained as follows,  

𝑡1 =
(𝑣𝑓 − 𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑖,𝑝)

𝑎𝑈 
(3.5.3.2) 

Case 2: 𝑖𝑝
𝑒 ≤ 𝑆𝑇𝑝 < 𝑡𝑡ℎ𝑟𝑒𝑒,𝑖,𝑝  

𝑡𝑡ℎ𝑟𝑒𝑒,𝑖,𝑝 is a boundary value for the vehicle that first travels with current speed, 

then accelerates with 𝑎𝑈 to the speed limit, and keeps driving at the speed limit to travel 

through the intersection. In this case, the acceleration rate of the subject vehicle 

experiences three stages, {0, 𝑎𝑈 , 0}. 𝑡𝑡ℎ𝑟𝑒𝑒,𝑖,𝑝 can be obtained as follows: 

𝑡𝑡ℎ𝑟𝑒𝑒,𝑖,𝑝 =
𝑙𝑖,𝑝

𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑖,𝑝 
−
(𝑣𝑓 − 𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑖,𝑝)

2

2 ∗ 𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑖,𝑝 ∗ 𝑎𝑈 
 (3.5.3.3) 
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where 𝑙𝑖,𝑝 denotes the remaining distance to the stop line. The two transition point time 

points 𝑡1, 𝑡2 for this three-segment trajectory can be calculated as follows: 

𝑡1 =
𝑣𝑓 ∗ 𝑆𝑇𝑝 − 𝑙𝑖,𝑝

𝑣𝑓 − 𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑖,𝑝 
−
(𝑣𝑓 − 𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑖,𝑝 )

2 ∗ 𝑎𝑈 
 (3.5.3.4) 

𝑡2 =
𝑣𝑓 − 𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑖,𝑝

𝑎𝑈 
 (3.5.3.5)   

Case 3: 𝑆𝑇𝑝 = 𝑡𝑡ℎ𝑟𝑒𝑒,𝑖,𝑝 

When the boundary value 𝑡𝑡ℎ𝑟𝑒𝑒,𝑖,𝑝 equals to the green initiation time 𝑆𝑇𝑝 for the 

subject vehicle 𝑖, the three-segment trajectory collapse into two segments, in which the 

subject vehicle first keeps its current speed and then accelerates to its maximum allowed 

speed with 𝑎𝑈. Then the acceleration segments would be {0, 𝑎𝑈}. The subject vehicle 

reaches its maximum speed and the stop line simultaneously in this case. The split time 𝑡1 

for the two-segment acceleration trajectory can be easily calculated as follows: 

𝑡1 = 𝑆𝑇𝑃 −
𝑣𝑓 − 𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑖𝑝

𝑎𝑈 
 (3.5.3.6) 

 

Case 4: 𝑡𝑡ℎ𝑟𝑒𝑒,𝑖,𝑝 < 𝑆𝑇𝑝 < 𝑡𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ,𝑖,𝑝 

𝑡𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑖,𝑝 is the time for the subject vehicle 𝑖 to arrive at the intersection with 

current speed. When the green start time 𝑆𝑇𝑝 falls between 𝑡𝑡ℎ𝑟𝑒𝑒,𝑖,𝑝 and 𝑡𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑖,𝑝, the 

subject vehicle 𝑖 can only reach the free speed if there is a deceleration segment. 

Nevertheless, a deceleration three-segment may cause unstable traffic flow and larger 

fuel consumption may be incurred. Therefore, to make the trajectory planning efficient 

and robust, a two-segment control scenario is employed, that is, {0,𝑎𝑈}. The subject 

vehicle needs to keep the current speed long enough so that it can reach a target speed 𝑣𝑓′ 

(𝑣𝑓
′ < 𝑣𝑓) with maximum acceleration capacity. Similar to the discussions above, the 

calculation of 𝑡1 is given in Equation (3.5.3.7). 

 

𝑡1 =  𝑆𝑇𝑝 −√2 ∗
𝑙𝑖,𝑝 − 𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑖,𝑝 ∗ 𝑆𝑇𝑝

𝑎𝑈
(3.5.3.7) 

 

This finishes the illustration of the trajectory planning model. Nevertheless, 

another issue arises when implementing trajectory planning in simulation environments. 

By following the predetermined trajectories, CAVs may collide with each other when the 

preceding vehicles slow down, and the following vehicle speeds up to catch the 

upcoming green signal. Due to this issue, CAVs must stop following the predetermined 

trajectories when their inter gap is close to a threshold. Through a trial-and-error 

experiment, this research selects a 1.5s headway gap as such threshold considering both 

safety and efficiency. This means that CAVs would switch back to default IDM car 

following mode when their distance has a smaller or equal to 1.5s headway. Also, if 𝑖𝑝
𝑒 of 
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vehicle 𝑖 is greater than the sum of the green start and green duration of its target phase, 

then this vehicle cannot meet a green signal in the currently planned cycle. In this case, 

the subject vehicle will keep moving based on IDM and will not enter the trajectory 

planning module until the next planned cycle initiates.    

 

3.6 Information on the Selected Location for Case Study 

 

A superstreet situated in Leeland, NC is identified for the case study. This 

superstreet is selected for its typical geometric design and traffic flow characteristics. The 

traffic characteristic information on the selected superstreet was available in Hummer et 

al. (2010). Figure 3.12 shows the selected superstreet and signal locations in Google 

Maps and Table 3.4 provides the traffic characteristics information. The maximum speed 

limits are set as 29 m/s (i.e., 65mph) for the main road and 15.6 m/s (i.e., 35mph) for the 

minor road. The four minor intersections in the superstreet system are all signal-

controlled with a cycle length of 120s.  

 

 
FIGURE 3.12: Selected superstreet for the case study and signal locations (adapted 

from the screenshot of Google Maps) 
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TABLE 3.4: Traffic Characteristic Information on the Superstreet at Leeland, NC 

Approach 
Average speed 

(m/s) 

Peak hour 

demand 

Average 

stops 

Travel time 

(Minutes) 

EBL 5.99 18 3 2.45 

EBR 6.93 20 2 1.38 

EBT 5.68 9 2 2.25 

NBL 8.00 20 1 1.17 

NBR 14.08 71 0 0.64 

NBT 14.75 2029 0 0.81 

SBL 5.72 321 1 1.26 

SBR 14.26 38 0 0.4 

SBT 19.58 1637 0 0.58 

WBL 8.09 66 2 2 

WBR 7.69 345 1 0.89 

WBT 5.05 11 2 2.09 

 

3.7 Simulation Scenarios and Relevant Settings 

 

An equivalent conventional intersection with the same road segment length, lane 

configuration, and maximum speed are designed in the simulation platform. The cycle 

length is also set the same as the superstreet in the real world, i.e., 120s, to make a fair 

comparison. The green splits for each approach are determined by their volume ratios. To 

account for different traffic conditions, this research tests four different traffic scales 

including 25%, 50%, 75%, and 100% of peak hour traffic volumes from Table 3.2. 

Furthermore, a market penetration analysis is conducted on the 100% peak hour traffic 

volumes. 25%, 50%, and 75% of CAV market penetration rates are considered in the 

simulation. Every scenario is run five times with different random seeds to account for 

the randomness. To make the system more robust and increase calculation accuracy, the 

simulation resolution is set as 10HZ, which means that the simulation runs 10 time steps 

every second. Once the vehicle enters the roadway network, the vehicle is assumed to 

enter the Vehicle-to-Infrastructure (V2I) communication range, which is reasonable since 

the selected superstreet has a rather short road segment length in all approaches before 

the traffic signals (less than 300m). Average traffic delay (delay per vehicle) and fuel 

consumption (fuel consumption per vehicle) are the performance indicators that are used 

for this research. Traffic delay is measured by the ideal travel time (free-flow speed 

without any stop) minus actual travel time. Fuel consumption is measured by the default 

emission model from SUMO, i.e., HBEFT.3 (Krajzewicz et al., 2015).  The maximum 

acceleration rates and deceleration rates for IDM are set as 2.5 m/s2. Considering drivers’ 

comfort, the maximum acceleration rate and deceleration rate in CAV trajectory planning 

are 2 m/s2.  The simulation experiment for Section 4.2 and the adaptive signal control in 

Section 4.3 last for 3600s. The remaining experiments from Section 4.3 last for 1800s to 

facilitate this research. 
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CHAPTER 4 RESULTS AND ANALYSIS 
 

4.1 Introduction 

 

This chapter discusses the simulation results from different scenarios defined in 

Chapter 3. The results and discussions are divided into two parts. The first part focuses 

on the results of platooning control I and trajectory planning I with fixed signal timing, 

while the second part presents the platooning control II and adaptive signal control signal 

timing. The results and discussions cover different traffic scales, different environments, 

and different performance indicators.  

 

4.2 Platooning Control I and Trajectory Planning Control I at Fixed Signal Timing 

  

4.2.1 The Performance of CAVs in Conventional Intersections  

 

4.2.1.1 Traffic Delay 

 

To provide an initial understanding of the performance of CAVs, this research 

first obtains the simulation results of CAVs from the equivalent conventional intersection. 

The traffic delays results are presented in Figure 4.1. From Figure 4.1, it can be observed 

that the developed platooning, trajectory planning, and platooning-based trajectory 

planning can reduce the traffic delay in most scenarios. The exception is CAVs with 

platooning at 25%. When CAVs are enabled with platooning, the speed of the following 

vehicles is influenced by the leading vehicle in the same platoon and may not be able to 

achieve their maximum speeds even in the light traffic volume conditions. This may 

potentially explain that no benefit is gained for platooning in the traffic demand of 25% 

and 50% peak hour traffic volume scenarios. The traffic delay improvements for CAV 

with platooning become clearer as the traffic demand increases. 
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FIGURE 4.1: Average traffic delay(s) of CAVs in the equivalent conventional 

intersection 

 Trajectory planning can reduce traffic delay to a larger extent in light traffic 

volume scenarios, and the improvement magnitudes shrink as the traffic volumes 

increases. These results can be explained by the trajectory planning modeling framework. 

As mentioned in the methodology section, to avoid collisions with preceding vehicles and 

queueing vehicles in front of the intersection, CAVs with trajectory planning may switch 

to the default car following model frequently in high traffic demand scenarios. For CAV 

with platooning-based trajectory planning, the traffic delays share a similar trend as the 

ones from CAV with platooning. Notably, platooning-based trajectory planning also 

successfully reduces the traffic delay in low traffic demand scenarios.  

 

4.2.1.2 Fuel Consumption 

From Figure 4.2, it can be observed that platooning could provide larger benefits 

in terms of fuel consumption in high traffic volume scenarios. The improvement 

magnitudes are also consistent with existing studies on platooning (Alam et al., 2015). 

The proposed trajectory planning framework reduces the average fuel consumption to a 

certain extent in low traffic volume scenarios. However, the fuel consumption benefits 

from trajectory planning are less significant compared to platooning. In addition, the 

trajectory planning framework may produce adverse effects towards fuel consumption in 
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high traffic volume scenarios, as observed in 100% peak hour traffic volume scenarios. In 

high traffic volume scenarios, CAVs with trajectory planning capability change to the car 

following model frequently because of the presence of preceding vehicles, which may 

produce speed fluctuations and higher fuel consumption. CAV with platooning-based 

trajectory planning produces the optimal fuel consumption results at most traffic demand 

levels.  
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FIGURE 4.2: Average fuel consumption (ml) of CAVs in the equivalent 

conventional intersection 

4.2.1.3 Comparison between CAVs and HDVs with Calibrated W99  

This research first examines the performance of the calibrated W99 model, IDM 

model, IDM with platooning, IDM with trajectory planning, and IDM with platooning-

based trajectory under 100% peak hour traffic volume, respectively. 

 

Although it is expected that CAVs outperform HDVs, it may not necessarily 

always be true in the real world. For instance, when the vehicle travels through a 

congested intersection, HDVs are likely to have shorter headways and practice 

emergency deceleration or acceleration to achieve the minimal travel time or avoid 

collisions, while CAVs cannot exceed the predetermined boundary of safe headway and 

acceleration rates. According to Figure 4.3, the results from calibrated W99 and IDM 

prove this assumption since they have similar average delays and fuel consumption.  
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FIGURE 4.3: Traffic performances with different scenarios 

However, when CAVs are enabled with platooning and trajectory planning, the 

CAVs may be superior to HDVs. For the proposed platooning model, compared to the 

IDM model, the traffic delay decreases from 23.42 to 20.49 (around 13%), while the fuel 

consumption decreases from 95.79 to 85.87 (around 10% reduction). Since HDVs with 

calibrated W99 have similar traffic delay and fuel consumption, similar improvements 

can be found when comparing CAV with platooning against HDVs with calibrated W99.   

 

The outstanding performance of platooning performances may be related to the 

large traffic volume in this scenario. On the other hand, IDM with trajectory planning 

yields few benefits in terms of both traffic delay and fuel consumption compared to IDM 

only. As described in the previous section, CAVs will change into the car following 

model when they detect vehicles that are within a 3s headway. In a congested traffic 

condition such as 100% peak hour traffic volume, the advantages of trajectory planning 

are significantly compromised. As for CAVs with platooning-based trajectory planning, 

the traffic delay decreases and reaches the lowest traffic delay (19.80s) among all 

scenarios, while the fuel consumption is lower compared to CAVs with trajectory 

planning but higher compared to CAVs with platooning. CAVs with platooning and 

trajectory planning, when vehicles are close to each other, form a platoon so that 

trajectory planning can be executed, which explains the greater traffic delay reduction in 

CAVs with platooning-based trajectory planning. The fuel consumption of platooning-

based trajectory planning is higher than ones of platooning but lower than the ones of 

trajectory planning.   

  

4.2.2 The Performances of CAVs in Superstreets 
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4.2.2.1 Traffic Delay 

Figure 4.4 presents the average traffic delay when CAVs are enabled with 

platooning, trajectory planning, and platooning-based trajectory planning. CAVs with 

platooning have similar performances as they did in the equivalent conventional 

intersection. When the traffic scale is at 25% peak hour traffic volume, the CAVs with 

platooning fail to reduce the average traffic delay. Nevertheless, when the traffic demand 

is greater or equal to 50% peak hour traffic volume, the CAVs start to reduce the traffic 

delay in the superstreet.  
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FIGURE 4.4: Average traffic delay(s) of CAVs in the superstreet 

As for trajectory planning, the reductions of traffic delay with different demands 

are relatively constant compared to the ones in the conventional intersection. In 

superstreet, the road capacity often is larger than the equivalent conventional intersection. 

Therefore, CAVs might not have to switch to the car-following model frequently as they 

did in the equivalent conventional intersection in 100% peak hour traffic volume demand, 

which explains the relevant constant traffic delay reduction.  

 

CAVs with platooning-based trajectory planning still produce minimal traffic 

delays in nearly all demand levels (except for 25% peak hour traffic demand).  The 

general trend of traffic delays is similar to that in platooning scenarios as in the 

equivalent conventional intersection. 

 

4.2.2.2 Fuel Consumption 

Figure 4.5 presents the fuel consumption of CAVs in the superstreet. Platooning 

yields similar fuel consumption trends as it did in the traffic delay results. Nevertheless, 

CAVs with trajectory planning produce higher average fuel consumption, especially in 

the lower traffic demand scenarios. The increased average fuel consumption can be 

potentially attributed to two reasons: 1) the acceleration behavior of CAVs with trajectory 

planning in order to catch the remaining green or initiation green time; 2) CAVs with 

trajectory planning may stop at the second consecutive intersection after passing the first 

intersection with acceleration in the superstreet system. In high traffic volume scenario, 

the adverse effects of fuel consumption are alleviated since CAVs with trajectory 

planning do not have much freedom of accelerating before the intersection. This result 

demonstrates the necessity of incorporating information on two consecutive signals into 

the designing of a trajectory planning framework when two signals are closely spaced. 

The adverse effects on fuel consumption are alleviated when CAVs are enabled with 

platooning-based trajectory planning.  
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FIGURE 4.5: Average fuel consumption (ml) of CAVs in the superstreet 

4.2.2.3 CAVs with Different Market Penetration Rates  

The dominance of CAVs on the road is a gradual process in which technology, 

political and legal challenges continuously remain. The policymakers may be interested 

in the performances of CAVs at different levels of market penetration rates. Therefore, 

this research also conducts a market penetration analysis where HDVs controlled by 
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calibrated W99 and CAVs controlled by IDM with platooning-based trajectory planning 

coexist. 25%, 50%, and 75% CAV market penetration rates are tested under the 100% 

peak hour traffic volume. When CAVs are following HDVs, CAVs are often assumed to 

have a larger headway (Yu and Fan, 2018). Therefore, when CAVs are following HDVs, 

the CAV headway is set the same as HDVs, i.e., 1.6s. Figure 4.6 provides the results of 

the market penetration analysis. Based on Figure 4.6, it can be observed that traffic delay 

starts to fall at the market penetration of 75% CAVs where the fuel consumption is 

similar to that of 0% CAV. The fuel consumption and traffic delay are highest when the 

market penetration rate of CAVs is at the 50% level. Overall, the more mixed the vehicle 

types are (i.e., equal market penetration rate of CAVs and HDVs), the worse the traffic 

performance is.  

 

 
FIGURE 4.6: Analysis for different CAV market penetration rates 

4.2.3 A Comparison between Conventional Intersection and Superstreet 

 

Figure 4.7 and Figure 4.8 compare the average traffic delay and fuel consumption 

of CAVs in the equivalent conventional intersection and superstreet, respectively. Based 

on Figure 4.7, with IDM vehicles, the superstreet can consistently outperform equivalent 

conventional intersection regarding average traffic delay. However, it could also be 

observed that the average traffic delay differences between the conventional intersection 

and superstreet are reduced in platooning and platooning-based trajectory planning 

scenarios.  
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FIGURE 4.7: Average traffic delay(s) comparison of CAVs between the 

conventional intersection and superstreet 

As for fuel consumption, Figure 4.8 shows that the average fuel consumptions of 

CAVs with trajectory planning are higher when they are in the superstreet under 25% and 

50% peak hour traffic volume. When CAVs are enabled with platooning-based trajectory 

planning, they have higher average fuel consumption on all demand levels in the 

superstreet. As explained in the previous section, this may potentially result from the lack 

of consideration on two closely spaced signalized intersections when developing the 

trajectory planning control framework.  

 

  
a. IDM b. IDM with platooning 

17.78

20.66

25.40

33.74

16.02
18.01

20.69
23.32

0

5

10

15

20

25

30

35

40

25% 50% 75% 100%

T
ra

ff
ic

 D
el

ay
 

Traffic Demand

Conventional Intersection Superstreet

18.39

20.66

22.84

26.09

16.88
17.81

18.87
20.49

0

5

10

15

20

25

30

25% 50% 75% 100%

T
ra

ff
ic

 D
el

ay

Traffic Demand

Conventional Intersection Superstreet

14.04

17.59

23.40

32.65

14.63
16.21

18.98

22.04

0

5

10

15

20

25

30

35

25% 50% 75% 100%

T
ra

ff
ic

 D
el

ay
 

Traffic Demand

Conventional Intersection Superstreet

14.66

18.14

20.90

23.82

15.00 15.40

17.30

19.80

0

5

10

15

20

25

30

25% 50% 75% 100%

T
ra

ff
ic

 D
el

ay

Traffic Demand

Conventional Intersection Superstreet

77.23
81.24

91.72

105.81

73.33
77.96

88.68

97.41

0

20

40

60

80

100

120

25% 50% 75% 100%

F
u

el
 C

o
n

su
m

p
ti

o
n

Traffic Demand

Conventional Intersection Superstreet

77.90 78.74
83.83

89.76

74.05 74.53
80.02

85.87

0

10

20

30

40

50

60

70

80

90

100

25% 50% 75% 100%

F
u

el
 C

o
n

su
m

p
ti

o
n

Traffic Demand

Conventional Intersection Superstreet



 

50 

 

  
c. IDM with trajectory planning d. IDM with platooning-based trajectory planning 

FIGURE 4.8: Average fuel consumption(ml) comparison of CAVs between the 

conventional intersection and superstreet 

4.3 Platooning Control II and Adaptive Signal Control 

 

4.3.1 Platooning Control II 

The platooning control system is designed primarily to maintain a constant close 

distance, and the fuel consumption may increase when the following vehicles accelerate 

to achieve a small headway. Nevertheless, the fuel consumption and traffic delay are 

expected to be reduced when CAV platoons allow more vehicles to traverse the 

intersection given the short green signal duration. The simulation results for CAV with 

and without platooning control under a fixed signal timing control are presented in Table 

4.1 and Table 4.2. When CAVs are equipped with platooning control, average traffic 

delay is reduced for both superstreet and conventional intersections. They also show a 

similar increasing trend of improvement magnitudes as the traffic volume increases. This 

is expected since when there are more vehicles, there are more chances that platooning 

control can take effect. The fuel consumption benefits are relatively less significant for 

these two environments but still show a similar trend. A notable result is that, with light 

traffic volumes, platooning can still yield fuel consumption reduction (1%) in superstreet 

but not in the conventional intersection (-1%). The reason for this slight difference is 

most likely to be the multiple signalized intersections for vehicles to travel through in the 

superstreet environment. When multiple intersections are present, CAVs have less chance 

to burn gasoline to accelerate even in platooning control systems. When the traffic 

volume is 100% peak hour volume, the equivalent conventional intersection is far more 

congested than the superstreet, therefore, platooning can deliver more improvements in 

terms of traffic delay and fuel consumption.  

 

TABLE 4.1: CAVs With and Without Platooning in the Superstreet 
Traffic Scale 25% 50% 75% 100% 

Control 
With 

Platooning 

No 

Platooning 

With 

Platooning  

No 

Platooning 

With 

Platooning  

No 

Platooning 

With 

Platooning 

No 

Platooning 

TD (s) 16.10 16.77 16.09 18.22 16.60 20.78 18.32 24.42 

Improvement 4% 12% 20% 25% 

FC (ml) 73.46 74.37 77.83 79.15 88.49 92.67 98.71 104.17 

Improvement 1% 2% 5% 5% 
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TABLE 4.2: CAVs With and Without Platooning in the Equivalent Conventional 

Intersection 
Traffic Scale 25% 50% 75% 100% 

Control 
With 

Platooning 

No 

Platooning 

With 

Platooning 

No 

Platooning 

With 

Platooning 

No 

Platooning 

With 

Platooning 

No 

Platooning 

TD (s) 16.81 17.50 18.42 20.85 19.75 24.87 21.14 32.92 

Improvement 4% 12% 21% 36% 

FC (ml) 79.56 78.94 83.67 83.40 92.39 95.43 100.37 110.41 

Improvement -1% 0% 3% 9% 

 

4.3.2 Adaptive Signal Control 

 

Figure 4.9 presents the traffic delay and fuel consumption reductions when the 

adaptive signal control in Section 3.5.1 and Section 3.5.2 is implemented. The proposed 

signal timing strategy can yield significant benefits in terms of both traffic delay and fuel 

consumption. The highest traffic delay reaches up to 75% when light traffic volume is 

present. As for the fuel consumption, the reduction ranges from 9% to 17% in different 

traffic scales. A general trend is that the improvement magnitudes decrease as the traffic 

volume increases in superstreet.  

 

Figure 4.10 shows the effects of proposed signal timing with CAVs in the 

environment of conventional intersection.  It can be easily seen that the optimized signal 

timing with CAVs also has a good performance, and the performance also deteriorates as 

the traffic volumes increase in the conventional intersection. The better performance 

observed in the superstreet may be attributed to the fact that superstreet have fewer 

conflicting movements in the intersections, which gives more flexibility in signal 

optimization.  

 
 

FIGURE 4.9: Comparison between fixed signal (FS) timing and optimized signal 

(OS) timing with CAVs in terms of traffic delay and fuel consumption in the 

superstreet 
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FIGURE 4.10: Comparison between fixed signal (FS) timing and optimized signal 

(OS) timing with CAVs in terms of traffic delay and fuel consumption in the 

equivalent conventional intersection 

 

Adaptive Signal Control in Superstreet with Different Arm Length 

Superstreet presents various forms in the real world to suit local needs. Therefore, 

it is necessary to test whether the signal timing optimization can have consistently good 

performance with different configurations. With the same lane configuration and traffic 

volume information being provided in Table 3.4, this research tests different arm lengths 

for the minor intersections in superstreet (original length for minor street is about 150𝑚 

and for main street it is about 250𝑚).  According to Table 4.3, the proposed signal 

control can have stable performances in different arm lengths for superstreet. 

 

TABLE 4.3: Adaptive Signal Control with Different Arm Lengths in Superstreet 

    FS OS Improvement 

200m 
TD 24.26 14.87 38% 

FC 93.64 86.44 8% 

300m 
TD 25.37 15.33 40% 

FC 115.59 106.61 8% 

400m 
TD 26.79 15.93 41% 

FC 141.06 130.94 7% 

 

4.3.3 Trajectory Planning II under Adaptive Signal Control 

 

Table 4.4 presents the average traffic delay and fuel consumption results with and 

without trajectory planning (denoted as TP in Table 4.4 and Table 4.5) under signal 

optimization in superstreet. The improvement magnitudes are decreasing when the traffic 

scale becomes larger. This is understandable since the trajectory planning module needs 

to be switched back to the default car following model frequently when CAVs encounter 

preceding vehicles in medium/high traffic volumes. The improvement magnitudes drop 

from 7% to 0% when traffic volumes increase from 25% to 100%. The fuel consumption 

is relatively insignificant, which is likely to be attributed to the unstable traffic flow 

caused by multiple sub intersections in superstreet. According to Table 4.4, the 

equivalent conventional intersection has relatively more advantages as the traffic flow is 
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more stable due to fewer intersections. The reduction in traffic delay shows a similar 

trend as it is in superstreet. The highest improvement for conventional intersection 

reaches 12% in terms of traffic delay in low traffic volume scenarios. The fuel 

consumption reduction brought by trajectory planning is as slight as 1-3%, which is still 

better than it does in superstreet.    

 

TABLE 4.4: Traffic Delay and Fuel Consumption for CAVs With and Without TP 

Under Signal Optimization in Superstreet 
Traffic Scale 25% 50% 75% 100% 

Control With TP No TP With TP No TP With TP No TP With TP No TP 

TD (s) 3.85 4.13 5.32 5.59 9.00 9.06 13.75 13.81 

Improvement 7% 5% 0% 0% 

FC (ml) 61.63 61.37 66.00 66.24 80.47 80.49 95.36 94.69 

Improvement 0% 0% 0% 0% 

 

TABLE 4.5: Traffic Delay and Fuel Consumption for CAVs With and Without TP 

Under Signal Optimization in Conventional Intersection 
Traffic Scale 25% 50% 75% 100% 

Control With TP No TP With TP No TP With TP No TP With TP No TP 

TD (s) 5.5 6.12 8.54 9.26 16.07 17.42 26.91 27.86 

Improvement 10% 8% 8% 3% 

FC (ml) 70.44 71.37 73.48 75.07 85.63 89.41 105.44 107.13 

Improvement 1% 2% 3% 2% 

 

4.4 Platooning and Trajectory Planning Approach Comparison 

  

This section compares two sets of platooning controls and trajectory planning 

controls. Since two sets of platooning controls and trajectory planning controls have 

different assumptions and model structures, this section only discusses the improvement 

magnitudes. Figure 4.11 and Figure 4.12 show the improvement magnitudes of traffic 

delays and fuel consumption between two platooning controls in the conventional 

intersection and superstreet. Platooning control II clearly has better performances in 

terms of traffic delay but not fuel consumption. This may be attributed to more 

acceleration behaviors to maintain small headways when vehicles leave the intersections 

in platooning control II. Figure 4.13 and Figure 4.14 show the comparison between 

trajectory planning I and trajectory planning II in terms traffic delay and fuel 

consumption respectively. For trajectory planning controls, trajectory planning control I 

shows superiority in terms of traffic delay but not fuel consumption, which is 

understandable as the trajectory planning control II does not consider the deceleration 

cases to avoid unstable traffic flows. Unstable traffic flows are likely to cause fuel 

consumption to increase in trajectory planning control I.   
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FIGURE 4.11: Traffic delay improvement magnitudes between two platooning 

controls 

 
FIGURE 4.12: Fuel consumption improvement magnitudes between two platooning 

controls 

 
FIGURE 4.13: Traffic delay improvement magnitudes between two trajectory 

planning controls 

 
FIGURE 4.14: Fuel consumption improvement magnitudes between two trajectory 

planning controls 

  

Platooning I Platooning II Platooning I Platooning II

-3% 4% -5% 4%

0% 12% 1% 12%

10% 21% 9% 20%

23% 36% 12% 25%

Conventional Intersection Superstreet

Platooning I Platooning II Platooning I Platooning II

-1% -1% -1% 1%

3% 0% 4% 2%

9% 3% 10% 5%

15% 9% 12% 5%

Conventional Intersection Superstreet

Trajectory Planning I Trajectory Planning II Trajectory Planning I Trajectory Planning II 

21% 10% 9% 7%

15% 8% 10% 5%

8% 8% 8% 0%

3% 3% 5% 0%

Conventional Intersection Superstreet

Trajectory Planning I Trajectory Planning II Trajectory Planning I Trajectory Planning II 

7% 1% -12% 0%

4% 2% -7% 0%

0% 3% -1% 0%

-1% 2% 1% 0%

Conventional Intersection Superstreet
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CHAPTER 5 CONCLUSIONS 
 

5.1 Summary of Research Findings 

 

This research investigated the performances of CAVs and HDVs in the 

environments of the superstreet and conventional intersection. CAVs were modeled with 

the IDM car-following model while HDVs were modeled with the W99 car-following 

model. A real-world superstreet situated in Leeland, NC, was replicated in the simulation 

platform to test the performances of CAVs and HDVs under different traffic conditions. 

In addition, to fully examine the potentiality of CAVs, platooning control, adaptive signal 

control, and trajectory planning strategy were developed for CAVs respectively.  In this 

research, the W99 model was calibrated with GA so that the W99 model could better 

represent the local drivers’ behaviors.  

 

5.1.1 Platooning Control I and Trajectory Planning I at Fixed Signal Timing  

 

The simulation results indicated that, without platooning and trajectory planning, 

CAV modeled by IDM did not have significant improvement compared to HDVs 

modeled by W99. The developed platooning strategy can successfully reduce the traffic 

delay and fuel consumption at relatively high traffic demand scenarios (50%, 75%, and 

100% peak hour volume) in both the superstreet and the conventional intersection. 

Trajectory planning could reduce the traffic delay in both superstreet and conventional 

intersection environments but with different impacts on fuel consumption. CAVs with 

trajectory planning produced higher fuel consumption in the superstreet in the lower 

traffic demand scenarios, especially in traffic demand 25% and 50% of peak hour traffic 

volume. A potential reason was that CAVs that accelerate to pass the first intersection 

may fail to pass the consecutive second intersection in the environment of superstreet. In 

the market penetration rate analysis of CAVs, it was found that the mixed traffic 

environment can compromise the benefit when the CAVs market penetration rates were 

at 25% and 50% peak hour traffic volume.  CAVs had better performances when the 

market penetration rate was about 75% and above.  

 

This research also compared the traffic performances of CAVs in the 

conventional intersection and superstreet. A notable finding was that the proposed 

trajectory planning control strategy can successfully reduce the average traffic delay 

without increasing the average fuel consumption in the conventional intersection. This 

was different from superstreet where CAVs enabled with trajectory planning increase the 

fuel consumption. This demonstrated the efficiency of the proposed trajectory planning 

strategy in an isolated intersection. However, this result also indicated that the trajectory 

planning without considering special features of two closely spaced signalized 

intersections may suffer adverse effects of fuel consumption. Overall, the improvement 

magnitude of platooning and trajectory planning was larger than that in the conventional 

intersection.  

 

5.1.2 Platooning Control II and Adaptive Signal Control 
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The research findings suggested that adaptive signal control with CAVs could 

yield the largest improvement compared to trajectory planning and platooning in terms of 

both traffic delay and fuel consumption; the improvement rates showed an increasing 

trend as the traffic scales rise. Platooning control could also yield traffic delay and fuel 

consumption benefits, and the highest improvement was more than 30% in terms of 

traffic delay in 100% peak hour traffic volume. In contrast to platooning and adaptive 

signal control, the effects of trajectory planning were attenuated when the traffic volume 

increases, which are understandable since CAVs must stop following predetermined 

trajectories when encountering close preceding vehicles. The unstable traffic flow caused 

by multiple intersections made the improvement for fuel consumption even less 

significant in the environment of superstreet. For most cases, performances of CAVs with 

different features showed a similar trend in the equivalent conventional intersection as 

they were in superstreet. CAV with trajectory planning performed better in conventional 

intersection design while CAVs with adaptive signal control performed better in 

superstreet. Table 5.1 provides a summary for performance comparison with different 

CAV techniques.  

 

TABLE 5.1: A Summary on the Environment of Greater Improvement for Different 

CAV Techniques 
  

  

TD  FC  

Light Traffic  Heavy Traffic  Light Traffic  Heavy Traffic  

Platooning control I Similar 
Conventional 

Intersection 
Superstreet 

Conventional 

Intersection 

Adaptive Signal Control Superstreet Superstreet Superstreet Superstreet 

Trajectory Planning II Under 

Adaptive Signal Control 

Conventional 

Intersection 

Conventional 

Intersection 

Conventional 

Intersection 

Conventional 

Intersection 

 

5.2 Future Research Direction Discussions 

 

Based on these research findings, future research directions could be the adaptive 

signal control strategy that takes arrival information on CAVs into consideration, which 

may reduce the adverse effects of trajectory planning on fuel consumption identified in 

this research. Also, a more sophisticated trajectory planning algorithm that accounts for 

two consecutive signalized intersections can be developed.  
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